[1] | H. Doi, Y. Fujiwara, K. Miyake, and Y. Oosawa. A systematic investigation of elastic moduli of WC-Co alloys. Metallurgical and Materials Transactions B, 1:1417 – 1425, 1970. |
[2] | T.G. Richard. The mechanical behavior of a solid microsphere filled composite. J. Composite Materials, 9:108 – 113, 1975. |
[3] | J.C. Smith. Experimental values for the elastic constants of a particulate-filled glassy polymer. J. Res. Natl. Bur. Stand. A: Phys. Chem., 80:45 – 49, 1976. |
[4] | B. Raju, S.R. Hiremath, and D. Roy Mahapatra. A review of micromechanics based models for effective elastic properties of reinforced polymer matrix composites. Composite Structures, 204:607 – 619, 2018. |
[5] | R.M. Christensen. A critical evaluation for a class of micromechanics models. J. Mech, Phys. Solids, 38:379 – 404, 1990. |
[6] | N. Chawla, B.V. Patel, M. Koopman, K.K. Chawla, R. Saha, B.R. Patterson, E.R. Fuller, and S.A. Langer. Microstructurebased simulation of thermomechanical behavior of composite materials by object-oriented finite element analysis. Materials Characterization, 49:395 – 407, 2002. |
[7] | H.K. Park, J. Jung, and H.S. Kim. Three-dimensional microstructure modeling of particulate composites using statistical synthetic structure and its thermo-mechanical finite element analysis. Computational Materials Science, 126:265 – 271, 2017. |
[8] | B. Máša, L. Náhlík, and P. Hutar. Particulate composite materials: Numerical modeling of a cross-linked polymer reinforced with alumina-based particles. Mechanics of Composite Materials, 49:421 – 428, 2013. |
[9] | I.V. Singh, A.S. Shedbale, and B.K. Mishra. Material property evaluation of particle reinforced composites using finite element approach. Journal of composite materials, 50:2757 – 2771, 2016. |
[10] | S. Bargmann, B. Klusemann, J. Markmannc, J.E. Schnabel, K. Schneider, C. Soyarslan, and J. Wilmers. Generation of 3D representative volume elements for heterogeneous materials: A review. Progress in Materials Science, 96: 322– 384, 2018. |
[11] | E.P. David Müzel, S. and; Bonhin, N.M. Guimarães, and E.S. Guidi. Application of the finite element method in the analysis of composite materials: A review. Polymers, 12:818, 2020. |
[12] | P. Kenesei, A. Borbély, and H. Biermann. Microstructure based three-dimensional finite element modeling of particulate reinforced metal–matrix composites. Materials Science and Engineering: A, 387 - 389:852 – 856, 2004. |
[13] | V. Kukshal, S. Gangwar, and A. Patnaik. Experimental and fi- nite element analysis of mechanical and fracture behavior of SiC particulate filled A356 alloy composites: Part I. Journal of Materials Design and Applications, 229:91 – 105, 2013. |
[14] | J. Zhang, Q. Ouyang, Q. Guo, and et al. 3D Microstructure- based finite element modeling of deformation and fracture of SiCp/Al composites. Composites Science and Technology, 123:1 – 9, 2016. |
[15] | G. Jagadeesh and S. Gangi Setti. A review on micromechanical methods for evaluation of mechanical behavior of particulate reinforced metal matrix composites. J Mater Sci, 55:9848 – 9882, 2020. |
[16] | S.B. Sapozhnikov and E.I. Shchurova. Voxel and finite element analysis models for ballistic impact on ceramic-polymer composite panels. Procedia Engineering, 206:182 – 187, 2017. |
[17] | A. Sas, N. Ohs, E. Tanck, and G. Harry van Lenthe. Nonlinear voxel-based finite element model for strength assessment of healthy and metastatic proximal femurs. Bone Reports, 12:100263, 2020. |
[18] | M.W. Beall, J. Walsh, and M.S. Shephard. Accessing CAD geometry for mesh generation. In Proceedings of the 12th International Meshing Roundtable, IMR 2003, Santa Fe, New Mexico, USA, September 14-17, 2003, pages 33 – 42, 2003. |
[19] | K. Ho-Le. Finite element mesh generation methods: a review and classification. Computer-Aided Design, 20:27 – 38, 1988. |
[20] | S.H. Lo. Finite element mesh generation and adaptive meshing. Progress in structural engineering and materials, 4:381 – 399, 2002. |
[21] | T.R. Faisal and Y. Luo. Study of fracture risk difference in left and right femur by QCT-based FEA. Biomedical Engineering Online, 16:116, 2017. |
[22] | H. Kheirollahi and Y Luo. Understanding hip fracture by QCT-based finite element modeling. J. Med. Biol. Eng, 37: 686 – 694, 2017. |
[23] | Z. Yosibash, R. Padan, L. Joskowicz, and C. Milgrom. A CT-based high-order finite element analysis of the human proximal femur compared to in-vitro experiments. J Biomech Eng, 129:297 – 309, 2007. |
[24] | J. Aboudi, S.M. Arnold, and B.A. Bednarcyk. Fundamentals of the Mechanics of multiphase materials. Butterworth-Heinemann Elsevier, Oxford, UK, 2013. |
[25] | O. Pierard, C. Friebel, and I. Doghri. Mean-field homogenization of multi-phase thermo-elastic composites: a general framework and its validation. Composites Science and Technology, 64:1587 – 1603, 2004. |
[26] | J.D. Eshelby. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. Royal Soc. of London, Ser. A, 241:376, 1957. |
[27] | T. Gentieu, A. Catapano, J. Jumel, and J. Broughton. Computational modelling of particulate-reinforced materials up to high volume fractions: Linear elastic homogenisation. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 233:1101 – 1116, 2019. |