[1] | Bailey, M. P. “Advanced polymer recycling.” Chemical Engineering, 121(3), 17, 2014. |
[2] | Zhou, R., Huang, B., Ding, Y., Li, W., & Mu, J. “Thermal decomposition mechanism and kinetics study of plastic waste chlorinated polyvinyl chloride.” Polymers, 11(12), 2080, 2019. |
[3] | Liu, J., Shimanoe, H., Ko, S., Lee, H., Jo, C., Lee, J., ... & Yoon, S. H. “Highly chlorinated polyvinyl chloride as a novel precursor for fibrous carbon material.” Polymers, 12(2), 328, 2020. |
[4] | Merah, N., Saghir, F., Khan, Z., & Bazoune, A. “A study of frequency and temperature effects on fatigue crack growth resistance of CPVC. Engineering fracture mechanics,” 72(11), 1691-1701, 2005. |
[5] | Merah, N., Bazoune, A., Fazal, A., & Khan, Z. “Weathering degradation mechanisms of chlorinated PVC. International Journal of Plastics Technology,” 17(2), 111-122, 2013. |
[6] | Merah, N., Bazoune, A., & Khan, Z. (2013). “Artificial and natural weathering of chlorinated polyvinyl chloride (CPVC).” In Advanced Materials Research (Vol. 652, pp. 1277-1282). Trans Tech Publications Ltd. |
[7] | Joseph, P., & Ebdon, J. R. “Recent developments in flame-retarding thermoplastics and thermosets.” Fire retardant materials, 1, 220-263, 2000. |
[8] | Gugouch, F., Sandabad, S., Mouhib, N., En-Naji, A., & El Ghorba, M. (2019). Damage Prediction of CPVC Based on Energy Method at Different Temperatures. In Key Engineering Materials (Vol. 820, pp. 179-187). Trans Tech Publications Ltd. |
[9] | Luo, P., Wen, S., Prakashan, K., Zhang, Z. X., Sinha, T. K., & Kim, J. K. “Physico-mechanical properties of NBR/CPVC blend vulcanizates and foams.” Journal of Vinyl and Additive Technology, 25(2), 182-188, 2019. |
[10] | Kim, J., Lee, J., Jo, C., & Kang, C. “Development of low cost carbon fibers based on chlorinated polyvinyl chloride (CPVC) for automotive applications.” Materials & Design, 204, 109682, 2021. |
[11] | Waples, D. W. (2013). Geochemistry in petroleum exploration. Springer Science & Business Media. |
[12] | Philp, R. P., & Calvin, M. “Possible origin for insoluble organic (kerogen) debris in sediments from insoluble cell-wall materials of algae and bacteria.” Nature, 262(5564), 134-136, 1976. |
[13] | Pihu, T., Konist, A., Puura, E., Liira, M., & Kirsimae, K. “Properties and environmental impact of oil shale ash landfills.” Oil shale, 36(2), 257-271, 2019. |
[14] | Reinik, J., Irha, N., Koroljova, A., & Meriste, T. “Use of oil shale ash in road construction: results of follow-up environmental monitoring.” Environmental monitoring and assessment, 190(2), 1-16, 2018. |
[15] | Irha, N., Uibu, M., Jefimova, J., Raado, L. M., Hain, T., & Kuusik, R. “Leaching behaviour of Estonian oil shale ash-based construction mortars.” Oil Shale, 31(4), 394, 2014. |
[16] | Winkler, H. “Closed-loop production systems—A sustainable supply chain approach.” CIRP Journal of Manufacturing Science and Technology, 4(3), 243-246, 2011. |
[17] | Sibanda, V., Ndlovu, S., Dombo, G., Shemi, A., & Rampou, M. “Towards the utilization of fly ash as a feedstock for smelter grade alumina production: a review of the developments.” Journal of Sustainable Metallurgy, 2(2), 167-184, 2016. |
[18] | Pitman, R. M. “Wood ash use in forestry–a review of the environmental impacts. Forestry:” An International Journal of Forest Research, 79(5), 563-588, 2006. |
[19] | Lanzerstorfer, C. “Fly ash from coal combustion: Dependence of the concentration of various elements on the particle size.” Fuel, 228, 263-271, 2018. |
[20] | Al-Otoom, A. Y., Shawabkeh, R. A., Al-Harahsheh, A. M., & Shawaqfeh, A. T. “The chemistry of minerals obtained from the combustion of Jordanian oil shale.” Energy, 30(5), 611-619, 2005. |
[21] | Aljbour, S. H. “Production of ceramics from waste glass and Jordanian oil shale ash.” Oil shale, 33(3), 2016. |
[22] | Sharo, A. A., Ashteyat, A. M., Alawneh, A. S., & Khaled, B. A. B. “The use of oil shale fly ash to improve the properties of Irbid soil.” World Journal of Engineering, 2018. |
[23] | Raado, L. M., Hain, T., Liisma, E., & Kuusik, R. “Composition and properties of oil shale ash concrete.” Oil shale, 31(2), 2014. |
[24] | Shawabkeh, R., Al-Harahsheh, A., Hami, M., & Khlaifat, A. “Conversion of oil shale ash into zeolite for cadmium and lead removal from wastewater.” Fuel, 83(7-8), 981-985, 2004. |
[25] | Wang, W., Cheng, Y., Tan, G., Liu, Z., & Shi, C. “Laboratory investigation on high-and low-temperature performances of asphalt mastics modified by waste oil shale ash.” Journal of Material Cycles and Waste Management, 20(3), 1710-1723, 2018. |
[26] | Asi, I., & Assa’ad, A. “Effect of Jordanian oil shale fly ash on asphalt mixes.” Journal of Materials in Civil Engineering, 17(5), 553-559, 2005. |
[27] | Gorokhovskii, A. V., Gorokhovskii, V. A., Mescheryakov, D. V., & Kopchekchi, A. A. “Glass ceramics based on oil shale ash.” Glass and ceramics, 59(5), 191-193, 2002. |
[28] | Thomas, S., Joseph, K., Malhotra, S. K., Goda, K., & Sreekala, M. S. (Eds.). (2012). Polymer composites, macro-and microcomposites (Vol. 1). John Wiley & Sons. |
[29] | Oja, V., Elenurm, A., Rohtla, I., Tearo, E., & Tali, E. “Thermal processing of polyvinylchloride waste with oil shale ash to capture chloride.” Oil Shale, 25(2), 2008. |
[30] | Abo Elfettouh, A. E. M. A., Haroun, A. A. A., RABIE, A. G. M., Ali, G. A. M., & Abdelrahim, M. Y. M. “Improving the mechanical and thermal properties of chlorinated poly (vinyl chloride) by incorporating modified CaCO3 nanoparticles as a filler.” Turkish Journal of Chemistry, 43(3), 750-759, 2019. |
[31] | Kim, J., Lee, J., Jo, C., & Kang, C. “Development of low cost carbon fibers based on chlorinated polyvinyl chloride (CPVC) for automotive applications.” Materials & Design, 204, 109682, 2021. |
[32] | Gupta, N., Brar, B. S., & Woldesenbet, E. “Effect of filler addition on the compressive and impact properties of glass fibre reinforced epoxy.” Bulletin of Materials Science, 24(2), 219-223, 2001. |
[33] | Davis, J. R. (Ed.). (2004). Tensile testing. ASM international. |
[34] | Ahmad, I., & Mahanwar, P. A. “Mechanical properties of fly ash filled high density polyethylene.” Journal of m inerals and materials characterization and engineering, 9(03), 183, 2010. |
[35] | Wang, K., Wu, J., Ye, L., & Zeng, H. “Mechanical properties and toughening mechanisms of polypropylene/barium sulfate composites.” Composites Part A: Applied Science and Manufacturing, 34(12), 1199-1205, 2003. |
[36] | Pelleg, J. (2012). Mechanical properties of materials (Vol. 190). Springer Science & Business Media. |
[37] | Zhu, J., Abeykoon, C., & Karim, N. “Investigation into the effects of fillers in polymer processing.” International Journal of Lightweight Materials and Manufacture, 4(3), 370-382, 2021. |
[38] | Mandal, T., Edil, T. B., & Tinjum, J. M. “Study on flexural strength, modulus, and fatigue cracking of cementitiously stabilised materials.” Road Materials and Pavement Design, 19(7), 1546-1562, 2018. |
[39] | Kundie, F., Azhari, C. H., Muchtar, A., & Ahmad, Z. A. “Effects of filler size on the mechanical properties of polymer-filled dental composites: A review of recent developments.” Journal of Physical Science, 29(1), 141-165, 2018. |
[40] | Sugiman, S., Salman, S., & Maryudi, M. “Effects of volume fraction on water uptake and tensile properties of epoxy filled with inorganic fillers having different reactivity to water.” Materials Today Communications, 24, 101360, 2020. |