[1] | Piyaporn, K., 2016, Extraction and characterization of cellulose nanocrystals produced by acid hydrolysis from corn husk, Journal of Metals, Materials and Minerals, 25, 19-26. |
[2] | Lee, K. Y., Aitomaki, Y., Bergulund, L. A., Oskman, K., Bismark, A., 2014, On the use of nanocellulose as reinforcement in polymer matrix, Composite Science and Technology, 105, 15-27. |
[3] | Brinchi, L., Cotana, F., Fortunati, E., Kenny, J. M., 2013, Production of nanocrystalline cellulose from lignocellulosic biomass: technology and application, Carbohydrate Polymers, 94, 154-169. |
[4] | Keshk, S. M. A. S., Al-Sehemi, A. G., 2013, New composite based on starch and mercerized cellulose, American Journal of Polymer Science 2013, 3(3): 46-51. DOI: 10.5923/j.ajps.20130303.02. |
[5] | Shalwan, A., Yousif, B. F., 2013, In state of art: mechanical and tribological behavior of polymeric composites based on natural fibers, Material and Design, 48, 14-24. DOI: 10.1016/j.matdes.2012.07.014. |
[6] | Kiziltas, E. E., Kiziltas, A., Bollin, S. C., Gardner, D. J., 2015, Preparation and characterization of transparent PMMA–cellulose-based nanocomposites, Carbohydrate Polymers, 127, 381-389. DOI: 10.1016/j.carbpol.2015.03.029. |
[7] | E. Pecoraro, D. Manzani, Y. Messaddeq, S. J. L. Ribeiro, Bacterial Cellulose rom Glucanacetobacter Xylinus: Preparation, Properties and Applications. In: Monomers, Oligomers, Polymers and Composites from Renewable Resources. M. N. Belgacem and A. Gandini, Eds. Amstredam, Netherland: Elsvier, 2008. |
[8] | Tanpichai, S., Quero, F., Nogi, M., Yano, H., Young, R. J., Lindstrom, T., Sampson, W. W., Eichhorn S. J., 2012, Effective young’s modulus of bacterial and microfibrillated cellulose fibrils in fibrous networks, Biomacromolecules, 13, 1340-1349. |
[9] | Nechita, P., Năstac S., 2017, Foam-formed cellulose compositematerials with potential applications in sound insulation, Journal of Composite Materials, 0(0), 1–8. DOI: 10.1177/0021998317714639. |
[10] | Lee, K.Y., Aitomäki, Y., Berglund, L.A., Oksman, K. and Bismarck, A. 2014. On the use of nanocellulose as reinforcement in polymer matrix composite. Composite Science and Technology, 105, 15-27. |
[11] | Bhandari, N. L., Dhungana, B. R., Lach, R., Henning, S., Adhikari, R., 2019, Synthesis and characterization of urea–formaldehyde eco-friendly composite based on natural fibers, Journal of Institute of Science and Technology, 24(1), 19-25, DOI: 10.3126/jist.v24i1.24623. |
[12] | Nuryawan, A., Risnasari, I., Sucipto, T., Iswanto, A. H., R R., Dewi, 2017, Urea-formaldehyde resins: production, application, and testing, IOP Conference Series: Materials Science and Engineering, 223, 012053. DOI: 10.1088/1757-899X/223/1/012053. |
[13] | Chirayil, C. J., Joy, J., Mathew, L., Mozetic, M., Koetz, J., Thomas, S., 2014, Isolation and characterization of cellulose nanofibrils from Helicteres isora plant, Industrial Crops and Products, 59, 27–34. DOI: 10.1016/j.indcrop.2014.04.020. |
[14] | Wang, B., Sain, M., Okasmaa, K., 2007, Study of structural morphology of hemp fibers from micro to nanoscale, Applied Composite Materials, 14, 89-103. |
[15] | M. Fan, D. Dai, B. Huang, Fourier Transform Infrared Spectroscopy for Natural Fibres, Fourier Transform - Materials Analysis, S. Salih, Ed. InTech, ISBN: 978-953-51-0594-7, pp. 45-68, 2012. |
[16] | Christjanson, P., Pehk, T., Siimer K., 2006, Structure formation in urea formaldehyde resin synthesis, Proceedings of the Estonian Academy of Sciences, Chemistry, 55, 212-225. |
[17] | Park, B., Kim, Y. S., Singh, A. P., Lim, K. P., 2003, Reactivity, chemical structure and molecular mobility of urea-formaldehyde adhesives synthesized under different conditions using FTIR and solid-state 13C-CP/MAS NMR spectroscopy, Journal of Polymer Analysis and Characterization, 88, 2677-2687. |
[18] | B. B. Neupane, B. Pandey, B. Giri, M.K. Joshi, A Textbook Of Nanoscience And Nanotechnology, Kathmandu, Nepal: Heritage publishers and distributors Pvt. Ltd., 2018. |
[19] | Chuayjuljit, S., Su-Uthai, S., Tunwattanaseree, C., Charuchinda, S., 2009, Preparation of Microcrystalline Cellulose from Waste-Cotton Fabric for Biodegradability Enhancement of Natural Rubber Sheets. Journal of Reinforced Plastics and Composites, 28, 1245-1254. DOI: 10.1177/0731684408089129. |
[20] | Karnnet, S., Potiyaraj, P., Pimpan, V., 2005, Preparation and Properties of Biodegradable Stearic Acid-Modified Gelatin Films, Polymer Degradation and Stability, 90(1), 106–110. |
[21] | Abdullah, K., Jawaid, M., Abdul Khalil, H. P. S., Zaidon, A., Hadiyane, A., 2012, Oil palm trunk polymer composites: Morphology, water absorption and thickness swelling behaviors, Composites of Palm and Polymer, 7(3), 2948-2959. |
[22] | Venkateshwaran, N., Perumal, A. E., Alavudeen, A., Thiruchitrambalam, M., 2011, Mechanical and water absorption behaviour of banana/sisal reinforced hybrid composites, Materials and Design, 32, 4017–4021. DOI: 10.1016/j.matdes.2011.03.002. |
[23] | Giri, J., Lach, R., Sapkota, J., Susan, A. A. B. H., Saiter, J.-M., Henning, S., Katiyar, V., Adhikari, R., 2018, Structural and thermal characterization of different types of cellulosic fibers, Bibechana, 15, 177-186. DOI: http://dx.doi.org/10.3126/bibechana.v16i0.21650. |
[24] | Rosli, N. A., Ahmed, I., Abdullah, I., 2013, Isolation and characterization of cellulose nanocrystals from Agave angystifolia fibre, Bioresources, 8, 1893-1908. |
[25] | Gemci, R., 2010, Examining the effects of mercerization process applied under different conditions to imensional stability, Scientific Research and Essay, 5, 560-571. |
[26] | Saud, R., Pokhrel, S., Yadav, P. N., 2019, Synthesis, characterization and antimicrobial activity of maltol functionalized chitosan derivatives, Journal of Macromolecular Science, Part A, 56(4), 375-383. DOI: 10.1080/10601325.2019.1578616. |
[27] | Yuningsih L. M., Mulyadi, D., Aripandi, I., 2017, Effect of various dopant HCl concentration on electrical conductivity of pani-cellulose composite with cellulose isolated from reed plant (Imperatacy lindrica (L.)) American Journal of Materials Science, 7(3), 59-63. DOI: 10.5923/j.materials.20170703.03. |
[28] | Viera, R. G. P., Filho, G. R., de Assunção, R. M. N., Meireles, C. S., Vieira, J. G., Oliveira, G. S., 2007, Synthesis and characterization of methylcellulose from sugar cane bagasse cellulose, Carbohydrate Polymers, 67(2), 182-189. DOI:10.1016/j.carbpol.2006.05.007. |
[29] | Asrofi, M., Abral, H., Kasim, A., Pratoto, A., 2017, XRD and FTIR studies of nanocrystalline cellulose from Water hyacinth (Eichornia crassipes) Fiber, Journal of Metastable and Nanocrystalline Materials, 29, 9-16. |
[30] | Adsul, M., Soni, S. K., Bhargava, S. K., Bansal, V., 2012, Facile approach for the dispersion of regenerated cellulose in aqueous system in the form of nanoparticles, Biomacromolecules, 13, 2890-2895. DOI: dx.doi.org/10.1021/bm3009022. |
[31] | Hu, X.-P., and Hsieh, Y.-L., 1996, Crystalline structure of developing cotton fibers, Journal of Polymer Science: Part B Polymer Physics, 34, 1451-1459. |
[32] | Janoobi, M., Harun, J., Shakeri, A., Mishra, M., Oksman, K., 2009, Chemical composition, crystallinity, and thermal degradation of bleached and unbleached Kenaf bast, BioResources, 4, 626-639. |
[33] | Kunusa, W. R., Laliyo, L. A. R., Iyabu, H., 2018, FTIR, XRD and SEM analysis of microcrystalline cellulose (MCC) fibers from corncobs in alkaline treatment, Journal of Physics: Conference Series, DOI: 10.1088/1742-6596/1028/1/012199. |
[34] | Petersson, L., and Oksman K., 2006, Biopolymer based nanocomposites: comparing layered silicates and microcrystalline cellulose as nanoreinforcement. Composites Science and Technology, 66, 2187-2196. |
[35] | Junior, W. A., Lima, S. M., Andrade, L. H. C., Súarez, Y. R. 2007, Comparative study of the cuticular hydrocarbon in queens, workers and males of Ectatomma vizottoi (Hymenoptera, Formicidae) by Fourier transform-infrared photoacoustic spectroscopy. Genetics and Molecular Research, 6(3), 492-499. |
[36] | Favier, V., Chanzy, H., Caville, J. Y., 1995, Polymer nanocomposites reinforced by cellulose whisker, Macromolecules, 28, 2365-6367. |
[37] | Zhong, J. B., Lv, J., Wei, C., 2007, Mechanical properties of sisal fiber reinforced urea-formaldehyde resin composites, Express Polymer Letters, 1, 681-687. |
[38] | Chiang, T. C., Hamdam, S. Osman, M. S., 2016, Urea formaldehyde composites reinforced with sago fibers: Analysis by FTIR, TGA and DSC, Advances in Material Science and Engineering, 2016, 1-10, Article ID 5954636. |
[39] | Sharma, N., Sharma, S., Gguleria, S. P., Batra, N. K., 2015, Mechanical properties of urea formaldehyde resin composites reinforced with bamboo, coconut and glass fiber, International Journal of Soft Computing and Engineering, 5, 66-71. |
[40] | Singha, A. S., Thakur, V. K., 2009, Study of mechanical properties of urea formaldehyde thermosets reinforced by pine needle powder, BioResources, 4(1), 292-308. |
[41] | Singha, A. S., and Thakur, V. K., 2008, Mechanical properties of natural fiber reinforced polymer composites, Bulletin of Material Science, 31, 791-799. |
[42] | Sgriccia, N., Hawley, M. C., Mishra, M., 2008, Characterization of natural fiber surfaces and natural fiber composites, Composites, 39, 1632-1637. |