[1] | Sullivan, R., Specific surface measurements on compact bundles of parallel fibers. Journal of Applied Physics, 1942. 13(11): p. 725-730. |
[2] | Sangani, A.S.a.Y., C., Transport processes in random arrays of cylinders: II-viscous flow. American Institute of Physics, 1988. 31(9): p. 2435-2444. |
[3] | Skartsis, L. and J. Kardos. The Newtonian permeability and consolidation of oriented carbon fiber beds. in Proceedings of the American Society for Composites. Fifth Technical Conference: Composite Materials in Transition. 1990. |
[4] | Kirsch, A. and N. Fuchs, Studies on fibrous aerosol filters—II. Pressure drops in systems of parallel cylinders. Annals of Occupational Hygiene, 1967. 10(1): p. 23-30. |
[5] | Chmielewski, C. and K. Jayaraman, The effect of polymer extensibility on crossflow of polymer solutions through cylinder arrays. Journal of Rheology (1978-present), 1992. 36(6): p. 1105-1126. |
[6] | Lee, S. and J. Yang, Modeling of Darcy-Forchheimer drag for fluid flow across a bank of circular cylinders. International journal of heat and mass transfer, 1997. 40(13): p. 3149-3155. |
[7] | Coulaud, O., P. Morel, and J. Caltagirone, Numerical modelling of nonlinear effects in laminar flow through a porous medium. Journal of Fluid Mechanics, 1988. 190: p. 393-407. |
[8] | Sadiq, T., S. Advani, and R. Parnas, Experimental investigation of transverse flow through aligned cylinders. International Journal of Multiphase Flow, 1995. 21(5): p. 755-774. |
[9] | Berdichevsky, A.L. and Z. Cai, Preform permeability predictions by self‐consistent method and finite element simulation. Polymer Composites, 1993. 14(2): p. 132-143. |
[10] | Dave, R., J. Kardos, and M. Duduković, A model for resin flow during composite processing part 2: numerical analysis for unidirectional graphite/epoxy laminates. Polymer Composites, 1987. 8(2): p. 123-132. |
[11] | Gutowski, T., et al., Consolidation experiments for laminate composites. Journal of Composite Materials, 1987. 21(7): p. 650-669. |
[12] | Wang, J.F. and W.R. Hwang, Permeability prediction of fibrous porous media in a bi-periodic domain. Journal of composite materials, 2008. 42(9): p. 909-929. |
[13] | Zhong, W.H., I. Currie, and D. James, Creeping flow through a model fibrous porous medium. Experiments in fluids, 2006. 40(1): p. 119-126. |
[14] | Cai, Z. and A. Berdichevsky, An improved self‐consistent method for estimating the permeability of a fiber assembly. Polymer composites, 1993. 14(4): p. 314-323. |
[15] | Choi, M.A., et al., Permeability modeling of fibrous media in composite processing. Journal of Non-Newtonian Fluid Mechanics, 1998. 79(2): p. 585-598. |
[16] | Kuwabara, S., The forces experienced by randomly distributed parallel circular cylinders or spheres in a viscous flow at small Reynolds numbers. Journal of the physical society of Japan, 1959. 14(4): p. 527-532. |
[17] | Gebart, B., Permeability of unidirectional reinforcements for RTM. Journal of composite materials, 1992. 26(8): p. 1100-1133. |
[18] | Tamayol, A. and M. Bahrami, Transverse permeability of fibrous porous media. Physical Review E, 2011. 83(4): p. 046314. |
[19] | Chen, X. and T. Papathanasiou, Micro-scale modeling of axial flow through unidirectional disordered fiber arrays. Composites Science and Technology, 2007. 67(7): p. 1286-1293. |
[20] | Drummond, J. and M. Tahir, Laminar viscous flow through regular arrays of parallel solid cylinders. International Journal of Multiphase Flow, 1984. 10(5): p. 515-540. |
[21] | Tamayol, A. and M. Bahrami, Analytical determination of viscous permeability of fibrous porous media. International Journal of Heat and Mass Transfer, 2009. 52(9): p. 2407-2414. |
[22] | Bruschke, M. and S. Advani, Flow of generalized Newtonian fluids across a periodic array of cylinders. Journal of Rheology (1978-present), 1993. 37(3): p. 479-498. |
[23] | Happel, J., Viscous flow relative to arrays of cylinders. AIChE Journal, 1959. 5(2): p. 174-177. |
[24] | Van der Westhuizen, J. and J.P. Du Plessis, An attempt to quantify fibre bed permeability utilizing the phase average Navier-Stokes equation. Composites Part A: Applied Science and Manufacturing, 1996. 27(4): p. 263-269. |
[25] | Phelan, F.R. and G. Wise, Analysis of transverse flow in aligned fibrous porous media. Composites Part A: Applied Science and Manufacturing, 1996. 27(1): p. 25-34. |
[26] | Sahraoui, M. and M. Kaviany, Slip and no-slip velocity boundary conditions at interface of porous, plain media. International Journal of Heat and Mass Transfer, 1992. 35(4): p. 927-943. |
[27] | Sangani, A. and A. Acrivos, Slow flow past periodic arrays of cylinders with application to heat transfer. International journal of Multiphase flow, 1982. 8(3): p. 193-206. |
[28] | Carman, P., The determination of the specific surface of powders. J. Soc. Chem. Ind. Trans, 1938. 57: p. 225. |
[29] | Happel, J. and H. Brenner, Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media. 1973: Noordhoff International Publishing. |
[30] | Amico, S. and C. Lekakou, Mathematical modelling of capillary micro-flow through woven fabrics. Composites Part A: Applied Science and Manufacturing, 2000. 31(12): p. 1331-1344. |
[31] | Chan Wei, L.Z.h., Tan Hong Mu, Laminar flow, turbulent flow and Reynolds number. |
[32] | Tselishchev, Y.G. and V. Val'tsifer, Influence of the type of contact between particles joined by a liquid bridge on the capillary cohesive forces. Colloid journal, 2003. 65(3): p. 385-389. |
[33] | Butt, H.-J. and M. Kappl, Normal capillary forces. Advances in colloid and interface science, 2009. 146(1): p. 48-60. |
[34] | www.ComsolMutiphisics.com. |