[1] | Lara, H.H., Garza-Treviño, E.N., Ixtepan-Turrent, L., Singh, D.K., 2011, Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds, J. Nanobiotechnol., 9, 30. |
[2] | Ge, L., Li, Q., Wang, M. et al., 2014, Nanosilver particles in medical applications: synthesis, performance, and toxicity, Int. J. Nanomed., 9, 2399–2407. |
[3] | Marambio-Jones, C., Hoek, E.M.V., 2010, A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment, J. Nanopart. Res., 12, 1531–1551. |
[4] | Llorensa, A., Lloretb, E., Picouetb, P.A. et al., 2012, Metallic-based micro and nanocomposites in food contact materials and active food packaging, Trends Food Sci. Technol., 24, 19–29. |
[5] | Phu, D.V., Quoc, L.A., Duy, N.N. et al., 2014, Study on antibacterial activity of silver nanoparticles synthesized by gamma irradiation method using different stabilizers, Nanoscale Res. Lett., 9, 162. |
[6] | Nguyen, T.A.T, Dang, V.P., Nguyen, N.D. et al., 2014, Bactericidal activity and silver release of porous ceramic candle filter prepared by sintering silica with silver nanoparticles/zeolite for water disinfection, Adv. Nat. Sci.: Nanosci. Nanotechnol., 5, 035001. |
[7] | Maneewattanapinyo, P., Banlunara, W., Thammacharoen, C. et al., 2011, An evaluation of acute toxicity of colloidal silver nanoparticles, J. Vet. Med. Sci., 73, 1417–1423. |
[8] | Aalaiea, J., Miralia, M., Motamedib, P., Khanlia, H.H., 2011, On the effect of nanosilver reinforcement on the mechanical, physical, and antimicrobial properties of polyethylene blown films, J. Macromol. Sci. Part B: Physics, 50, 1873–1881. |
[9] | Jang, M.W., Kim, J.Y., Ihn, K.J., 2007, Properties of polypropylene nanocomposites containing silver nanoparticles, J. Nanosci. Nanotechnol., 7, 3990–3994. |
[10] | Radheshkumar, C., Münstedt, H., 2005, Morphology and mechanical properties of antimicrobial polyamide/silver composites, Mater. Lett., 59, 1949–1953. |
[11] | Radheshkumar, C., Münstedt, H., 2006, Antimicrobial polymers from polypropylene/silver composites-Ag+ release measured by anode stripping voltammetry, React. Funct. Polym., 66, 780–788. |
[12] | Ahmadi, Z., Ashjari, M., Hosseini, R., Nia, J.R., 2009, Synthesis and morphological study of nanoparticles Ag/TiO2 ceramic and bactericidal investigation of polypropylene-Ag/TiO2 composite, J. Inorg, Organomet. Polym., 19, 322–327. |
[13] | Phu, D.V., Quoc, L.A., Duy, N.N., Hien, N.Q., 2013, Study of incorporation of silver nanoparticles onto PE-g-PAAc nonwoven fabric by γ-irradiation for water treatment, Radiat. Phys. Chem., 88, 90–94. |
[14] | Shameli, K., Ahmad, M.B., Zargar, M. et al., 2011, Fabrication of silver nanoparticles doped in the zeolite framework and antimicrobial activity, Inter. J. Nanomed., 6, 331–341. |
[15] | Dimitrijević, S.P., Kamberović, Z.J., Korać, M.S. et al., 2014, Influence of reducing agents and surfactants on size and shape of silver fine powder particles, Assoc. Metallurg. Eng. Serbia, 20, 73–87. |
[16] | Dastjerdi, R., Mojtahedi, M.R.M., Shoshtari, A.M., 2008, Investigating the effect of various blend ratios of prepared masterbatch containing Ag/TiO2 nanocomposite on the properties of bioactive continuous filament yarns, Fibers Polym., 9, 727–734. |
[17] | Fernández, A., Picouet, P., Lloret, E., 2010, Reduction of the spoilage-related microflora in absorbent pads by silver nanotechnology during modified atmosphere packaging of beef meat, J. Food. Prot., 73, 2263–2269. |
[18] | Mthombeni, N.H., Mpenyana-Momyatsi, L., Onyango, M.S., Momba, M.N.B., 2012, Breakthrough analysis for water disinfection using silver nanoparticles coated resin beads in fixed-bed column, J Hazard. Mater., 217-218, 133–140. |