[1] | Kaewkuk, S., Sutapun, W., and Jankumjorn, K. (2013). Effects of interfacial modification and fibre content on physical properties of sisal fibre/ polypropylene composites. Composites part B, vol. 45, pp. 544-549. |
[2] | Xue, L., Lope, G. T., and Satyanarayan, P. (2007). Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review. Journal of Polymer Environment, vol. 15 pp. 25-33 doi 10.1007/s10924-006-0042-3. |
[3] | Pal, S., Mukhopadyay, D., Sanyal, S.., and Mukherjea, R. (1998). Studies on process variable for natural fibre composites: Effect of PEAP as interfacial agent. Journal of Applied Polymer Science, vol. 35, pp. 973-985. |
[4] | Satyanarayana, K. G., Arizaga, G. G. C., and Wypych, F. (2009). Biodegradable composites based lignocellulosicfibres —An overview. Journal of Polymer Science, vol. 34, pp. 982–1021. |
[5] | Seki, Y. (2009). Innovative multifunctional siloxane treatment of jute fibre surface and its effect on the mechanical properties of jute/thermoset Composites. Materials Science andEngineering A, vol. 508, no. 1-2, pp. 247–252. |
[6] | Thamae, T., and Baillie, C. (2007). Influence of fibre extraction method, alkali and silane treatment on the interfaces of agave Americana waste HDPE composites as possible roof ceilings in Lesotho. Composite Interface; 14: pp. 821–836. |
[7] | Sydenstricker, T.H.D., Mochnaz, S., and Amico, S.C. (2003). Pull-out and other evaluations in sisal- reinforced polyester Biocomposites. Polymer Testing 22, pp. 375-380. |
[8] | Yusuf A.A., Massoumi I., and Hassan A. (2010). Comparison of polylactic acid/kenaf and polylactic acid/rice husk composites: The influence of the natural fibers on the mechanical, thermal, and biodegradability properties. Journal of Polymer Environment, 18.pp. 422-429. |
[9] | Wang, W., and Hang, G. (2000). Characterization and utilization of natural coconut fibre composites. Materials and Design, vol.30, no.7, pp. 2741-44. |
[10] | Owen, M. Macaulay, (2014). Effects of weaving parameters and fabric surface treatment on the mechanical properties of cotton fabric reinforced epoxy composites. Thesis Project, Ahmadu Bello University, Zaria. |
[11] | Vilay, V., Mariatti, M., Taib, R. M., and Todo, M. (2008). Effect of fibre surface treatment and fibre loading on the properties of bagasse fiber-reinforced unsaturated polyester Composite. Composites Science and Technology, vol. 68, no. 3-4, pp. 631–638. |
[12] | Sever, K. (2010). The improvement of mechanical properties of jute fiber/LDPE composites by Fiber surface treatment. Journal of Reinforced Plastic Composite, 29: 1921–1929. |
[13] | Mishra, S., Mohanty, A. K., Drzal, L.T., and Misra, M. (2003). Studies on the mechanical performance of biofibre/glass reinforced polyester hybrid composites. Composite science and technology, 63: 1337-85. |
[14] | Kalia, S., Kaith, B. S., and Kaur, I. (2009). Pretreatments of natural fibres and their application as reinforcing material in polymer composites—A review. Polymer Engineering and Science, 49, 1253–72. |
[15] | John, M.J., and Anandjiwala, R.D. (2008). Recent developments in chemical modification and characterization of natural fibre-reinforced composites. Polymer Composites, 29: 187–207. |
[16] | Das, S., Saha, A. K., Choudhury, P. K., Basak, R. K.., Mitra, B. C., Todd, T., Lang, S., and Rowell, R. M. (2000). Effect of steam pretreatment of jute fibre on dimensional stability of jute composite. Journal of applied polymer science, 76: 1652-61.Doi: 10.1002/(SICI)1097-4628 (20000613)76:11. |
[17] | Collier, J. R., and Collier, B. J. (1998). Processes for obtaining cellulosic fibre bundle at least 2.5cm long from plant stalk rind. U.S. Pat 5,718,802. |
[18] | Alvarez, V. A., and Vázquez, A. (2006). Influence of fibre chemical modification procedure on the mechanical properties and water absorption of MaterBi-Y/sisal fibrecomposites. Composites Part A, vol. 37(10), pp. 1672–1680. |
[19] | Padmavathi, T., Naidu, S. V., and Rao, R. M. V. G. K. (2012). Studies on Mechanical Behavior of Surface Modified Sisal Fiber-Epoxy Composites. Journal of Reinforced Plastic Composite; 31: pp. 519–532. |
[20] | Asegekar, S.D., and Joshi, V.K. (2013). Characteristics of sugarcane fibres. Indian Journal of Fibre and Textile Research, Vol. 39. Pp. 180-184. |
[21] | Hughes, M. (2011). Defects in natural fibres; their origin, characteristics and implications for natural fibre-reinforced composites. Journal of Material Science. 49:599-609. DOI 10.1007/s10853-011-6025-3. |
[22] | Peng, X., Fan, M., Hartley, J., and M, Al-Zubaidy, M. (2011). Properties of natural fibre made by pultrusion process. Journal of Composite Materials, (46), 237. DOI: 10.1177/0021998311410474. |
[23] | John, M.J., Francis, B., Varughese, K.T., and Thomas, S. (2008). Effect of chemical modification on properties of hybrid fibre composites. Composites Part A, 49: 352-363. |
[24] | Al-Kaabi, K.., Al-Khanbashi, A., and Hammani, A. (2005). Date palm fibres as polymeric reinforcement: DPF/polyester composite properties. Polymer Composites, 26: pp. 604-13. |
[25] | Aziz, S.H., and Ansell, M.P. (2004). The effect of alkalization and fibre alignment on the resin mechanical and thermal properties of kenaf and hemp bast fiber composites. Part 1 – polymer matrix. Composite Science Technology, 64.1219–1230. |
[26] | Bessadok, A., Marais, S., Colasse, L., Zimmerlin, I., Roudesli, S., Metayer, M., and Gouanvé, F. (2007). Effect of chemical treatments of Alfa (Stipatenacissima) fibres on water-sorption properties. Composites Science and Technology, vol. 67, no. 4-4, pp. 685-97. |
[27] | Chen, X., Guo, Q., and Mi, Y. (1998). Bamboo fibre reinforced polypropylene composites: A study of the mechanical properties. Journal of Applied Polymer Science, 69. Pp. 1891. |
[28] | DeRosa, I.M., Kenny, J.M., Maniruzzaman, M., Monti, M., Puglia, D., Santuli, C., and Sarasini, F. (2011). Effect of chemical treatments on the mechanical and thermal behavior of okra fibers. Composite Science Technology, 71. Pp. 246-254. |