[1] | Sendijarevic, V., Klempner, D. (2004). Handbook of polymeric foams and foam technology, (New York, Hanser Publishers), pp. 479-504. |
[2] | Landrock, A.H. (1995). Handbook of plastic foams: types, properties, manufacture and applications, (New Jersey, Noyes Publication), pp. 147-162. |
[3] | Gupta N, Woldesenbet E and Mensah P. Compression properties of syntactic foams: effect of cenosphere radius ratio and specimen aspect ratio. Compos Part A - Appl S 2004; 35, 103-111. |
[4] | Song B, Chen W and Frew DJ. Dynamic compressive response and failure behavior of an epoxy syntactic foam. J Compos Mater 2004; 38, 915-936. |
[5] | Ahmadi H, Liaghat G H, Shokrieh M M, Hadavinia H, Ordys A, Aboutorabi A. Quasi-Static and Dynamic Compressive Properties of Ceramic Microballoon Filled Syntactic Foam, Journal of Composite Materials 2015, Vol. 49, No. 10, pp. 1255-1266. |
[6] | Swetha C and Kumar R. Quasi static uni-axial compression behavior of hollow glass microspheres/epoxy based syntactic foams. Mater Design 2011; 32, 4152-4163. |
[7] | Zhang L and Ma J. Effect of coupling agent on mechanical properties of hollow carbon microsphere/phenolic resin syntactic foam. Compos Sci Technol 2010; 70, 1265-1271. |
[8] | Woldesenbet E and Sankella N. Flexural properties of nanoclay syntactic foam sandwich structures. J Sand Struct Mater 2009; 11, 425-444. |
[9] | Maharsia R, Gupta N and Jerro HD. Investigation of flexural strength properties of rubber and nanoclay reinforced hybrid syntactic foams. Mater Sci Eng A 2006; 417, 249-258. |
[10] | Awaja F and Arhatari BD. X-ray Micro Computed Tomography investigation of accelerated thermal degradation of epoxy resin/glass microsphere syntactic foam. Compos Part A 2009; 40, 1217-1222. |
[11] | John B, Nair CPR and Ninan KN. Effect of nanoclay on the mechanical, dynamic mechanical and thermal properties of cyanate ester syntactic foams. Mater Sci Eng A 2010; 527, 5435-5443. |
[12] | Gupta N and Nagorny R. Tensile properties of glass microballoon/epoxy resin syntactic foam. J Appl Polym Sci 2006; 102, 1254-1261. |
[13] | Wouterson EM, Boey FYC, Hu X and Wong SC. Specific properties and fracture toughness of syntactic foam: Effect of foam microstructures. Compos Sci Technol 2005; 65, 1840-1850. |
[14] | Gupta N, Ye R and Porfiri M. Comparison of tensile and compressive characteristics of vinyl ester/glass microballoon syntactic foams. Compos Part B - Eng 2010; 41, 236-245. |
[15] | Guohe H and Demei Y. Tensile, thermal and dynamic mechanical properties of hollow polymer particle-filled epoxy syntactic foam. Mater Sci Eng A 2011; 528, 5177-5183. |
[16] | Yu M, Zhu P and Ma Y. Experimental study and numerical prediction of tensile strength properties and failure modes of hollow spheres filled syntactic foams. Comp Mater Sci 2012; 63, 232-243. |
[17] | Sharma J, Chand N. Role of Cenosphere Addition on Dielectric Properties of Sisal Fiber-Polypropylene Composites. Polym-plast. Technol 2013, 52, 743. |
[18] | Lau K and Hui D. Effectiveness of using carbon nanotubes as nano-reinforcements for advanced composite structures. Carbon 2002; 40, 1605-1606. |
[19] | Morlat S, Mailhot B, Gonzalez D and Gardette JL. Photo-oxidation of Polypropylene / Montmorillonite Nanocomposites. 1. Influence of Nanoclay and Compatibilizing Agent. Chem Mater 2004; 16, 377-383. |
[20] | Timmerman JF, Hayes BS and Seferis JC. Nanoclay reinforcement effects on the cryogenic microcracking of carbon fiber/epoxy composites. Compos Sci Techol 2002; 62, 1249-1258. |
[21] | Yasmin A, Luo JJ, Abot JL and Daniel IM. Mechanical and thermal behavior of clay/epoxy nanocomposites. Compos Sci Techol 2006; 66, 2415-2422. |
[22] | Wetzel B, Rosso P, Haupert F and Friedrich K. Epoxy nanocomposites – fracture and toughening mechanisms. Eng Fracture Mech 2006; 73, 2375-2398. |
[23] | Gupta N and Maharsia R. Enhancement of energy absorption in syntactic foams by nanoclay incorporation for sandwich core applications. Appl Compo Mater 2005; 12, 247-261. |
[24] | Maharsia R and Jerro HD. Enhancing tensile strength and toughness in syntactic foams through nanoclay reinforcement. Mat Sci Eng A 2007; 454-455. |
[25] | Peter S and Woldesenbet E. Nanoclay syntactic foam composites – high strain rate properties. Mater Sci Eng A 2008; 494, 179-187. |
[26] | Saha MC and Nilufar S. Nanoclay reinforced syntactic foams: flexural and thermal behavior. Polym Composites 2010; 31, 1332-1342. |
[27] | Ahmadi H, Liaghat GH, Shokrieh MM, Aboutorabi A, H. Hadavinia H, & Ordys A, Compressive Properties of Nanoclay Reinforced Syntactic Foams at Quasi-Static and High Strain Rate Loading. Polym-Plast Technol 2014; 53, 990-999. |
[28] | ASTM Standard C271. Standard test method for density of sandwich core materials, (2004). |
[29] | Ahmadi H, Liaghat G H, Shokrieh M M. Experimental investigation of fabrication parameters’ effects on the mechanical properties of epoxy/ceramic microballoon syntactic foams. Modares Mechanical Engineering Journal 2014, vol. 14, No. 2, pp. 47-54 (In Persian). |
[30] | Azeez AA, Rhee KY, Park SJ and Hui D. Epoxy clay nanocomposites – processing, properties and applications: a review. Compos Part B 2013; 45, 308-320. |
[31] | ASTM Standard D638. Standard test method for tensile properties of plastics, (2004). |