[1] | Lou, R., Wu, S-B., Lv, G.-J., and Guo, D.-L., 2010, Pyrolytic products from rice straw and enzymatic/mild acidolysis lignin (EMAL). Bioresources; 5: 2184-2194. |
[2] | Nagarajan V, Mohanty AK and Misra M., 2013, Sustainable green composites: value addition to agricultural residues and perennial grasses. ACS Sustain Chem Eng; 3: 225-233. |
[3] | Kengkhetkit, N., Amornsakchai, T., 2014, A new approach to ‘‘Greening’’ plastic composites using pineapple leaf waste for performance and cost effectiveness. Mater Des; 55:292–9. |
[4] | Ogah, A., and Afiukwa, J., 2014, Characterization and comparison of mechanical behavior of agro fiber-filled high-density polyethene bio-composites. Journal of reinforced plastics & composites, 33(I): 37-46. |
[5] | Koutsomitopoulou, A.F., Bénézet J.C., Bergeret, A., Papanicolaou, G.C., 2014, Preparation and characterization of olive pit powder as filler to PLA-matrix bio-composites. Powder Technology, 255, 10–16. |
[6] | Pattara, C., Cappelletti, GM., Cichelli, A., 2010, Recovery and use of olive stones: commodity, environmental and economic assessment. Renew Sustain Energy Rev, 14: 1484–9. |
[7] | Ihemouchen, C., Djidjelli, H., Boukerrou, A., Fenouillot, F., Barres, C., 2013, Effect of compatibilizing agents on the mechanical properties of high-density polyethylene/olive husk flour composites. J Appl Polym Sci., 128: 2224–9. |
[8] | Papanicolaou, G.C., Koutsomitopoulou, A.F., Sfakianakis, A., 2012, Effect of thermal fatigue on the mechanical properties of epoxy matrix composites reinforced with olive pits powder. J Appl Polym Sci., 124:67–76. |
[9] | Naghmouchi, I., Mutjé P., Boufi, S., 2014, Polyvinyl chloride composites filled with olive stone flour: mechanical, thermal, and water absorption properties. J Appl Polym Sci., 131: 41083–93. |
[10] | Amar, B., Salem, K., Hocine, D., Chadia, I., Juan, MJ., 2011, Study and characterization of composites materials based on polypropylene loaded with olive husk flour. J Appl Polym Sci., 122: 1382–94. |
[11] | Naghmouchi, I., Francesc, X., Espinach, Mutjé, P., Boufi, S., 2015, Polypropylene composites based on lignocellulosic fillers: How the filler morphology affects the composite properties. Materials and Design, 65, 454–461. |
[12] | Ghazy, S.E., Samra, S.E., May, A.E.M., El-Morsy, S.M., 2006, Removal of aluminum from some water samples by sorptive-flotation using powdered modified activated carbon as a sorbent and oleic acid as a surfactant. Anal. Sci., 22, 377–382. |
[13] | Rodríguez, A. Lama, A., Rodríguez, R., Jiménez, A., Guillén, R., Fernández-Bolaños, J., 2008, Olive stone an attractive source of bioactive and valuable compounds. Bioresour. Technol. 99, 13, 5261–5269. |
[14] | Tserki, V., Matzinos, P., Kokkou, S., Panayiotou, C., 2005, Novel biodegradable composites based on treated lignocellulose waste flour as filler. Part I. Surface chemical modification and characterization of waste flour. Compos. A: Appl. Sci. Manuf. 36, 7, 965–974. |
[15] | Cristofaro, D., ‘‘A process for the realization of plates and panels consisting of exhausted olive husks of crushed olive stones and polypropylene, and derived product. ’’ Patent, International Publication Number: WO 9738834, 1997. |
[16] | Azwa, ZN., Yousif, BF., Manalo, AC., Karunasena, W., 2013, A review on the degradability of polymeric composites based on natural fibers. Mater Des., 47:424–42. |
[17] | Ashori A., 2008, Wood-plastic composites as promising green-composites for automotive industries. Bioresour. Technol., 99: 4661–7. |
[18] | John, M.J., Thomas S., 2008, Biofibres and biocomposites. Carbohydr Polym., 71:343–64. |
[19] | Brlek, T., Pezo, L., Voca, N., Kircaka, T., Vukmirovic, D., Colovic, R., Bodroza-Solarov, M., 2013, Chemometric approach for assessing the quality of olive cake pellets. Fuel Processing Technology, 116, 250-256. |
[20] | Benatenta, V., Fullana, A., 2015, Torrefaction of olive mill waste. Biomass and Bioenergy, 37, 186-194. |
[21] | Dermeche, S., Nadour, M., Larroche, C., Moulti-Mati, F., Michaud, P., 2013, Olive mill wastes: biochemical characterizations and valorization strategies. Process Biochemistry, 48, 10, 1532-1552. |
[22] | V. K. Thakur and M. R. Kessler, Green biorenewable biocomposites: from knowledge to industrial applications. Toronto: Apple Academic Press, 2015. |
[23] | Bax, B., and Mussig, J., 2008, Impact and tensile properties of PLA/cordenka and PLA/flax Composites. Compos Sci. Technol., 68: 1601–1607. |
[24] | Rahman, W.A.W.A., Isa, N.M., Rahmat, A.R., Adenan, N., Ali, R.R., 2010, Rice husk/high density polyethylene biocomposite: effect of rice husk filler size and composition on injection molding processability with respect to impact properties. J Adv Mat Res, 38-86: 367-374. |
[25] | Gasparovic, L., Korenova, Z., Jelemensky, L., 2010, Kinetic study of wood chips decomposition by TGA. Chem. Pap., 64, 174. |
[26] | Toubal, L., Cuilliere, J. C., Bensalem, K., Francois, V., and Gning, P. B., Hygrothermal effect on moisture kinetics and mechanical properties of hemp / polypropylene composite: experimental and numerical studies, Polym. Compos., 2015. doi:10.1002/pc.23414. |