[1] | A. Herega Physical aspects of self-organization processes in composites. 1. Simulation of percolation clusters of phases and of inner boundaries. // Nanomechanics Science and Technology. – 2013. – V. 4, №2. – P. 119-132. |
[2] | A. Herega Physical aspects of self-organization processes in composites. 2. The structure and interaction of inner boundaries. // Nanomechanics Science and Technology. – 2013. – V. 4, №2. – P. 133-143. |
[3] | A. Herega et al. Percolation Model of Composites: Fraction Clusters and Internal Boundaries. // International Journal of Composite Materials. – 2012. V. 2(6). – P. 142-146. |
[4] | A. Herega, V. Vyrovoy Inner boundaries of composites: multiscale character of structures and properties of force fields, Proc. IV All-Russian Symp. "Mechanics of Composite Materials and Structures," Moscow: Russian Academy of Sciences, Institute of Applied Mechanics. – 2012. – V. 2. – P. 204-209. |
[5] | V. Vyrovoy, A. Herega, O. Korobko Oscillatory interaction of hierarchically subordinated structures of the heterogeneous material, Proc. Conf. "Modeling-2010," Kiev: G. E. Pukhov Institute of Modeling Problems in Power Engineering, National Academy of Sciences of Ukraine. – 2010. – P. 253-260. |
[6] | A. Uemov Systems and System Parameters. / Problems of Formal Analysis of Systems, Moscow: Vysshaya Shkola Press, 1968. |
[7] | L. Bertalanffy, The general system theory. A critical review, in: Studies into the General System Theory, Moscow: Progress Press. – 1969. – P. 23-82. |
[8] | V. Solomatov, V. Vyrovoy, A. Bobryshev The Polystructure Theory of Composite Construction Materials, Tashkent: FAN Press, 1991. |
[9] | Yu. Morozov, I. Simbukhov, D. Dyakonov Study of microstructure and properties of ultrahigh-strength pipe steel of strength category x120 prepared under laboratory conditions. // Metallurgist. –2012. – V. 56 (7-8). – P. 510-518. |
[10] | V. Turchenko et al. Structural features, magnetic and resistive properties of nanoparticle perovskites, prepared by sol gel method. / Proceedings of IV International Conference "Functional Nanomaterials and High-purity substances". – Suzdal, 1-5 October 2012. – P. 87-88. |
[11] | M. Salamon, M. Jaime The physics of manganites: Structure and transport. // Rev. Mod. Phys. –2001.– V.73. – P. 583-628. |
[12] | M. Soutsos, D. Breysse, V. Garnier, A. Goncalves, A. Monteiro Estimation of on-site compressive strength of concrete. / Non-Destructive Assessment of Concrete Structures: Reliability and Limits of Single and Combined Techniques. RILEM State of the Art Reports. – 2012. – V. 1. – P. 119-186. |
[13] | H. Hadavinia, A.J. Kinloch, M.S.G. Little, A.C. Taylor The prediction of crack growth in bonded joints under cyclic-fatigue loading I. Experimental studies. // International Journal of Adhesion and Adhesives. – 2003. – V. 23, Is. 6. – P. 449-461. |
[14] | H. Hadavinia, A.J. Kinloch, M.S.G. Little, A.C. Taylor The prediction of crack growth in bonded joints under cyclic-fatigue loading. II. Analytical and finite element studies. // International Journal of Adhesion and Adhesives. – 2003. – V. 23, Is. 6. – P. 463-471. |
[15] | J. Jurgen Oscillatory kinetics at solid-solid phase boundaries in ionic crystals. // Solid State Ionics. – 2000. – V. 131. – P. 129-142. |
[16] | A. Fedotov, A. Mazanik, A. Ulyashin Electrical activity of grain boundaries in silicon bicrystals and its modification by hydrogen plasma treatment // Solar Energy Materials and Solar Cells. – 2002. – Vol. 72. – P. 589-595. |
[17] | A. Fedotov, A. Mazanik, E. Katz et al. Electrical activity of tilt and twist grain boundaries in silicon // Solid State Phenomena. – 1999. – Vols. 67-68. – P. 15-20. |
[18] | M. Reda Chellali, Z. Balogh, G. Schmitz Nano-analysis of grain boundary and triple junction transport in nanocrystalline Ni/Cu. // Ultramicroscopy. – 2013. – V. 132. – P. 164-170. |
[19] | M.W. Zhu, Z.J. Wang, Y.N. Chen, H.L. Wang, Z.D. Zhang Effect of grain boundary on electrical properties of polycrystalline lanthanum nickel oxide thin films. // Applied Physics A. – 2013. – V. 112, Iss. 4. – P.1011-1018. |
[20] | M. Hirose, E. Tsunemi, K. Kobayashi, H. Yamada Influence of grain boundary on electrical properties of organic crystalline grains investigated by dual-probe atomic force microscopy. // Appl. Phys. Lett.– 2013. – V. 103. – P. 173109-112. |
[21] | D.D. Moiseenko, V.E. Panin, T.F. Elsukova Role of Local Curvature in Grain Boundary Sliding in a Deformed Polycrystal. // Phys. Mesomech. – 2013. – V. 16, No. 4. – P. 335-347. |
[22] | V.E. Panin, R.V. Goldstein, S.V. Panin Mesomechanics of multiple cracking of brittle coatings in a loaded solid. // International Journal of Fracture. – 2008. – V.150, iss. 1-2. – P. 37-53. |
[23] | V.E. Panin Plastic deformation and fracture of solids at the mesoscale level. // Materials Science and Engineering A. – 1997. – Vol. 234. – P. 944-948. |
[24] | E. Medvedeva, S. Alexandrova Computer simulation of field ion micrographs of irradiated platinum. / Proceedings of IV International Conference "Functional Nanomaterials and High-purity substances". – Suzdal, 1-5 October 2012, pp. 55-57. |
[25] | S.G. Psakhie, K.P. Zolnikov, D.S. Kryzhevich, A.V. Zheleznyakov, V.M. Chernov Atomic collision cascades in vanadium crystallites with grain boundaries. // Phys. Mesomech. – 2009. – V. 12, No. 1-2. – P. 20-28. |
[26] | S.G. Psakhie, K.P. Zolnikov, D.S. Kryzhevich Calculation of diffusion properties of grain boundaries in nanocrystalline copper. // Phys. Mesomech. – 2008. – V. 11, No. 1-2. – P. 25-28. |
[27] | A.I. Dmitriev, A. Yu. Nikonov, S.G. Psakhie Atomistic mechanism of grain boundary sliding with the example of a large-angle boundary S = 5. Molecular dynamics calculation. // Phys. Mesomech. – 2011. – V. 14, No. 1-2. – P. 24-28. |
[28] | V.E. Panin, L.S. Derevyagina, N.M. Lemeshev, A.V. Korznikov, A.V. Panin, M.S. Kazachenok On the Nature of Low-Temperature Brittleness of BCC Steels. // Phys. Mesomech. – 2014. – V. 17, No. 2. – P. 89-95. |
[29] | B.I. Shklovskii, A.L. Efros Electronic Properties of Doped Semiconductors. – Heidelberg: Springer, 1984. – 388 p. |
[30] | S. Trugman, A. Weinrib Percolation with a Threshold at Zero: a New Universality Class. // Physical Review B. – 1985. – V. 31, No. 5. – P. 2974-2980. |
[31] | A. Herega, V. Vyrovoy Computer modeling of the inner interfaces as elements of material structure, Proc. Conf. "Modeling-2008," Kiev: G. Pukhov Institute of Modeling Problems in Power Engineering, National Academy of Sciences of Ukraine, pp. 195–199, 2008. |
[32] | A. Knyazeva On simulation of irreversible processes in materials with a great number of inner interfaces. // Phys. Mesomech. – 2003. – V. 6, No. 5. – P. 11-27. |
[33] | A. Herega On One Criterion of the Relative Degree of Ordering in Images. // Technical Physics. – 2010. – V. 55, No. 5. – P. 741-742. |
[34] | A. Herega On correlation of properties and the degree of orderliness of composite structure. // Proceeding of Odessa National Academy of Food Technologies. – 2014. – V. 46 (1). – P. 236-239. (In Russian). |
[35] | Yu. Yanovsky, I. Obraztsov Some aspects of computer modeling of advanced polymer composite materials structure and micromechanical properties. // Phys. Mesomech. – 1998. – V. 1, No. 1. – P. 129-135. |
[36] | Yu. Yanovsky The mechanics of nano-structured materials and composites. From fractal description to macro scale. // Vestnik of N.I. Lobachevsky Nizhny Novgorod University. – 2011. – V. 4 (5). – P. 2641-2643. (In Russian). |
[37] | A. Olemskoĭ, I. Sklyar Evolution of the defect structure of a solid during plastic deformation. // Sov. Phys. Usp. – 1992. – V. 35, No. 6. – P. 455-480. |
[38] | E. Homer, B. Adams, R. Wagoner Recovering Grain Boundary Inclination Parameters through Oblique Double Sectioning. // Metallurgical and Materials Transactions A. – 2007. – V.38. – P. 1575-86, 2007. |
[39] | S. Mileiko Composites and nanostructures. // Composites and Nanostructures. – 2009. – V. 1. – P. 6-37. |