| [1] | R. M. Kirby, J. Bartram, and R. Carr, “Water in food production and processing : quantity and quality concerns,” Food Control, vol. 14, no. 5, pp. 283–299, 2003, doi: 10.1016/S0956-7135(02)00090-7. |
| [2] | Kanu, Ijeoma, and A. O.K., “Industrial Effluents and their Impact on Water Quality of receiving rivers in Nigeria,” J. Applieal Technol. Environ. Sanit., vol. 1, no. 1, pp. 75–86, 2011. |
| [3] | K. Valta, T. Kosanovic, D. Malamis, K. Moustakas, and M. Loizidou, “Overview of water usage and wastewater management in the food and beverage industry,” Desalin. Water Treat., vol. 53, no. 12, pp. 3335–3347, 2015, doi: 10.1080/19443994.2014.934100. |
| [4] | A. Doggaz, A. Anis, M. M. Le Page, T. Mohamed, and L. François, “No Title,” Sep. Purif. Technol., vol. 18, no. 30500–8, pp. 1383–5866, 2018, doi: https://doi.org/10.1016/j.seppur.2018.04.045. |
| [5] | M. B. Tchamango, S. R., Wandji Ngayo, K., Belibi Belibi, P. D., Nkouam, F., & Ngassoum, “Treatment of a dairy effluent by classical electrocoagulation and indirect electrocoagulation with aluminum electrodes,” Sep. Sci. Technol., vol. 56, no. 6, pp. 1128–1139, 2020, doi: https://doi.org/10.1080/01496395.2020.1748889. |
| [6] | B. S. Rathi, P. S. Kumar, and D. N. Vo, “Critical review on hazardous pollutants in water environment : Occurrence, monitoring, fate, removal technologies and risk assessment,” Sci. Total Environ., vol. 797, p. 149134, 2021, doi: 10.1016/j.scitotenv.2021.149134. |
| [7] | W. A. Wurtsbaugh, H. W. Paerl, and W. K. Dodds, “Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum,” Wiley Interdiscip. Rev. Water, vol. 6, no. 5, pp. 1–27, 2019, doi: 10.1002/WAT2.1373. |
| [8] | O. Sofia, J. Corburn, and H. Ribeiro, “Challenges regarding water quality of eutrophic reservoirs in urban landscapes: A mapping literature review,” Int. J. Environ. Res. Public Health, vol. 16, no. 1, 2019, doi: 10.3390/ijerph16010040. |
| [9] | A. R. A. Aziz, P. Asaithambi, and W. M. A. B. W. Daud, “Combination of electrocoagulation with advanced oxidation processes for the treatment of distillery industrial effluent,” Process Saf. Environ. Prot., vol. 99, pp. 227–235, Jan. 2016, doi: 10.1016/j.psep.2015.11.010. |
| [10] | X. Liu et al., “Enhanced dyes adsorption from wastewater via Fe3O4 nanoparticles functionalized activated carbon,” J. Hazard. Mater., vol. 373, pp. 397–407, Jul. 2019, doi: 10.1016/j.jhazmat.2019.03.103. |
| [11] | M. A. Musa and S. Idrus, “Physical and biological treatment technologies of slaughterhouse wastewater: A review,” Sustain., vol. 13, no. 9, pp. 1–20, 2021, doi: 10.3390/su13094656. |
| [12] | Y. Fang, K. Yang, Y. Zhang, C. Peng, and A. Robledo-cabrera, “Highly surface activated carbon to remove Cr ( VI ) from aqueous solution with adsorbent recycling,” Environ. Res., vol. 197, no. 111151, 2021, doi: 10.1016/j.envres.2021.111151. |
| [13] | O. E. Ogwuche, E. C. Gimba, and S. E. Abechi, “An Evaluation of the Adsorptive Behaviour of Activated Carbon Derived from Hyphaene Thebaica Nut Shells for the Removal of Dichlorvos from Wastewater Abstract :,” Int. J. Sci. Technoledge, vol. 3, no. 4, pp. 274–285, 2015. |
| [14] | G. Wyasu, G. C. E., A. E. B., and N. G. I., “Production and Characterization of Active Carbon from Epicarp of Balanite Aegyptiaca and Detarium Mirocarpum Shells,” Int. J. Sci. Technoledge, vol. 4, no. 3, pp. 19–25, 2016. |
| [15] | S. Samaila, M. H. Adamu, and J. J. Deshi, “Adsorption of lead and mercury ions on chemically treated doum palm shells,” IDOSR J. Sci. Res., vol. 2, no. 1, pp. 25–36, 2017. |
| [16] | S. R. Tchamango and A. Darchen, “bipolaires horizontales : effet de la structure des électrodes sur les performances du réacteur,” vol. 6, pp. 4546–4554, 2018, doi: 10.1016/j.jece.2018.06.044. |
| [17] | X. Chen, G. Chen, and P. L. Yue, “Separation of Pollutants from Restaurant Wastewater by Electrocoagulation.,” Sep. Purif. Technol., vol. 19, pp. 65–73, 2000, doi: http://dx.doi.org/10.1016/S1383-5866(99)00072-6. |
| [18] | S. R. Tchamango, N. C. P., N. Emmanuel, H. Dimiter, and D. André, “Treatment of dairy ef fl uents by electrocoagulation using aluminium electrodes,” Sci. Total Environ. J., vol. 408, pp. 947–952, 2009, doi: 10.1016/j.scitotenv.2009.10.026. |
| [19] | D. Lakshmanan and D. A. Clifford, “Ferrous and Ferric Ion Generation During Iron Electrocoagulation,” Environ. Sci. Technol, vol. 43, no. 10, pp. 3853–3859, 2009. |
| [20] | D. T. Moussa, M. H. El-naas, M. Nasser, and M. J. Al-marri, “A comprehensive review of electrocoagulation for water treatment : Potentials and challenges,” J Env. Manag., vol. 186, pp. 24–41, 2016, doi: 10.1016/j.jenvman.2016.10.032. |
| [21] | F. Hussin, M. K. Aroua, and M. Szlachtac, “Combined solar electrocoagulation and adsorption processes for Pb(II) removal from aqueous solution,” Chem. Eng. Process. - Process Intensif., vol. 143, no. July, p. 107619, 2019, doi: 10.1016/j.cep.2019.107619. |
| [22] | S. Elabbas et al., “Eggshell adsorption process coupled with electrocoagulation for improvement of chromium removal from tanning wastewater,” Int. J. Environ. Anal. Chem., vol. 00, no. 00, pp. 1–13, 2020, doi: 10.1080/03067319.2020.1761963. |
| [23] | S. Akter and M. S. Islam, “Effect of additional Fe2+ salt on electrocoagulation process for the degradation of methyl orange dye: An optimization and kinetic study,” Heliyon, vol. 8, no. 8, Aug. 2022, doi: 10.1016/j.heliyon.2022.e10176. |
| [24] | M. Y. Abdelnaeim, I. Y. El Sherif, A. A. Attia, and N. A. Fathy, “Impact of chemical activation on the adsorption performance of common reed towards Cu(II) and Cd(II),” Int. J. Miner. Process., no. Ii, 2016, doi: 10.1016/j.minpro.2016.09.013. |
| [25] | O. M. of A. AOAC, Association of Official Analytical Chemists, 18th ed. Washington DC., 2005. |
| [26] | D. L. Kouadio, M. Diarra, A. C. Djassou, B. Dibi, B. K. Dongui, and K. Mamadou, “Etude expérimentale de l ’ adsorption du bleu 16 et du méthyle rouge sur du charbon issu de la coque de la cabosse de cacao,” J. Soc. Ouest-Afr. Chim., vol. 051, pp. 17–30, 2022. |
| [27] | Z. Khademi, B. Ramavandi, and M. Taghi, “Journal of Environmental Chemical Engineering The behaviors and characteristics of a mesoporous activated carbon prepared from Tamarix hispida for Zn (II) adsorption from wastewater,” Biochem. Pharmacol., vol. 3, no. 3, pp. 2057–2067, 2015, doi: 10.1016/j.jece.2015.07.012. |
| [28] | J. Rodier, L’analyse de l’eau, 9e ed. Paris-France, 2009. |
| [29] | S. De Gisi, G. Lofrano, M. Grassi, and M. Notarnicola, “Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review,” Sustain. Mater. Technol., vol. 9, pp. 10–40, 2016, doi: 10.1016/j.susmat.2016.06.002. |
| [30] | C. Tcheka, M. Harouna, S. S. F. Gaineunbo, and M. Mbarki, “Kinetic and Equilibrium Studies on Adsorption of Methylene Blue and Methyl orange in Aqueous Solution onto Activated Carbon by H3PO4 Activation from the Hulls of Vitexdoniana,” Int. J. Innov. Appl. Stud., vol. 10, no. 1, pp. 101–108, 2015. |
| [31] | M. Nassirou et al., “Process conditions optimization of plant waste-derived microporous activated carbon using a full factorial design and genetic algorithm,” J. Mater. Environ. Sci., vol. 13, no. 8, pp. 884–899, 2022. |
| [32] | S. D. B. Maazou, H. I. Hima, M. Mousbahou, M. Alma, and Z. Adamou, “Elimination of the chromium by the elaborate activated coal and characterized from the c-ockle of the core of Balanites Aegyptiaca,” Int. J. Biol. Chem. Sci., vol. 11, no. 6, pp. 3050–3065, 2017, doi: 10.4314/ijbcs.v11i6.39. |
| [33] | R. Domga et al., “Batch Equilibrium, Kinetic and Thermodynamic Studies on Adsorption of Methylene Blue in Aqueous Solution onto Activated Carbon Prepared from Bos Indicus Gudali Bones,” Chem. J., vol. 1, no. 6, pp. 172–181, 2015. |
| [34] | A. Attour, N. Ben Grich, M. M. Tlili, M. Ben Amor, F. Lapicque, and J.-P. Leclerc, “Intensification of phosphate removal using electrocoagulation treatment by continuous pH adjustment and optimal electrode connection mode To cite this,” Desalin. Water Treat., 2022, doi: 10.1080/19443994.2015.1057537. |
| [35] | H. Bacelo, A. M. A. Pintor, S. C. R. Santos, R. A. R. Boaventura, and C. M. S. Botelho, “Performance and prospects of different adsorbents for phosphorus uptake and recovery from water,” Chem. Eng. J., vol. 381, no. June 2019, p. 122566, 2020, doi: 10.1016/j.cej.2019.122566. |
| [36] | K. M. Kifuani et al., “Adsorption of basic dye, Methylene Blue, in aqueous solution on bioadsorbent from agricultural was from Cucumeropsis mannii Naudin,” Int. J. Biol. Chem. Sci., vol. 12, no. February, pp. 558–575, 2018. |
| [37] | X. Liu and L. Zhang, “SC,” Powder Technol., 2015, doi: 10.1016/j.powtec.2015.02.055. |
| [38] | C. Namasivayam and D. Sangeetha, “Equilibrium and kinetic studies of adsorption of phosphate onto ZnCl2 activated coir pith carbon,” J. Colloid Interface Sci., vol. 280, pp. 359–365, 2004, doi: 10.1016/j.jcis.2004.08.015. |
| [39] | X. Liu et al., “Biomass activated carbon supported with high crystallinity and dispersion Fe3O4 nanoparticle for preconcentration and effective degradation of methylene blue,” J. Taiwan Inst. Chem. Eng., vol. 81, pp. 265–274, Dec. 2017, doi: 10.1016/j.jtice.2017.10.002. |
| [40] | F. Largo et al., “Adsorptive removal of both cationic and anionic dyes by using sepiolite clay mineral as adsorbent: Experimental and molecular dynamic simulation studies,” J. Mol. Liq., vol. 318, 2020, doi: 10.1016/j.molliq.2020.114247. |
| [41] | E. Lacasa, P. Ca, C. Sáez, F. J. Fernández, and M. A. Rodrigo, “Electrochemical phosphates removal using iron and aluminium electrodes,” Chem. Eng. J., vol. 172, pp. 137–143, 2011, doi: 10.1016/j.cej.2011.05.080. |
| [42] | M. Chen, X. Li, Q. Zhang, C. Wang, H. Hu, and Q. Wang, “Phosphate removal from aqueous solution by electrochemical coupling siderite packed column,” Chemosphere, vol. 280, no. May, p. 130805, 2021, doi: 10.1016/j.chemosphere.2021.130805. |
| [43] | M. Kobya, P. Isaac, S. Mohammadzadeh, S. Yildirim, and Z. Ukundimana, “Phosphorous removal from anaerobically digested municipal sludge centrate by an electrocoagulation reactor using metal (Al, Fe and Al-Fe) scrap anodes,” Process Saf. Environ. Prot., vol. 152, pp. 188–200, 2021, doi: 10.1016/j.psep.2021.06.003. |
| [44] | P. I. Omwene and M. Kobya, “Treatment of domestic wastewater phosphate by electrocoagulation using Fe and Al electrodes: A comparative study,” Process Saf. Environ. Prot., vol. 116, pp. 34–51, 2018. |
| [45] | M. Kobya, E. Demirbas, N. U. Parlak, and S. Yigit, “Treatment of cadmium and nickel electroplating rinse water by electrocoagulation,” Environ. Technol., vol. 31, no. 13, pp. 1471–1481, 2010, doi: DOI: 10.1080/09593331003713693. |
| [46] | N. Huda, A. A. A. Raman, M. M. Bello, and S. Ramesh, “Electrocoagulation treatment of raw landfill leachate using iron-based electrodes: Effects of process parameters and optimization,” J. Environ. Manage., vol. 204, pp. 75–81, Dec. 2017, doi: 10.1016/j.jenvman.2017.08.028. |
| [47] | J. P. Kushwaha, V. C. Srivastava, and I. D. Mall, “Organics removal from dairy wastewater by electrochemical treatment and residue disposal,” Sep. Purif. Technol., vol. 76, no. 2, pp. 198–205, 2010, doi: 10.1016/j.seppur.2010.10.008. |
| [48] | A. Eulmi, S. Hazourli, R. Abrane, M. Bendaia, A. Aitbara, and S. Touahria, “Evaluation of Electrocoagulation and Activated Carbon Adsorption Techniques Used Separately or Coupled to Treat Wastewater from Industrial Dairy,” Int. J. Chem. React. Eng., vol. 17, no. 12, pp. 1–12, 2019, doi: 10.1515/ijcre-2018-0229. |
| [49] | Chow H. H., “The Removal Methods of Phosphorus/Phosphate and Nitrogen/Nitrate from Water and Wastewater,” Kuala Lumpur, 2012. |