[1] | Le cancer augmente au niveau mondial, au milieu des besoins croissants en services. Accessed: Mar. 08, 2025. [Online]. Available: https://www.who.int/news/item/01-02-2024-global-cancer-burden-growing--amidst-mounting-need-for-services. |
[2] | Burns C. J., Juberg D. R., Cancer and occupational exposure to pesticides: an umbrella review, Int. Arch. Occup. Environ. Health, 94(5): 945–957 (2021). |
[3] | “Epidémiologie | pnlca.” Accessed: Mar. 08, 2025. [Online]. Available: https://www.pnlca.org/copy-of-cancer-en-cote-d-voire-2. |
[4] | Sun B., Lovell J. F., Zhang, Y.,Current development of cabazitaxel drug delivery systems, Wiley Interdiscip. Rev. Nanomedicine Nanobiotechnology, 15(2): 1–26 (2023). |
[5] | Tabanelli R., Brogi S., Calderone V., Improving curcumin bioavailability: Current strategies and future perspectives, Pharmaceutics, 13(10) (2021). |
[6] | Gupta B., Sharma P. K., Malviya R., Mishra P. S., Curcumin and Curcumin Derivatives for Therapeutic Applications: In vitro and In vivo Studies, Curr. Nutr. Food Sci., 20(10): 1189–1204 (2024). |
[7] | Yousefnezhad M., Babazadeh M., Davaran S., Akbarzadeh A., Pazoki-Toroudi H., Preparation and in-vitro evaluation of PCL–PEG–PCL nanoparticles for doxorubicin-ezetimibe co-delivery against PC3 prostate cancer cell line, Chem. Rev. Lett., 7(2): 159–172(2024). |
[8] | Wang R., Structure-Activity Relationship and Pharmacokinetic Studies of 1,5-Diheteroarylpenta-1,4-dien-3-ones: A Class of Promising Curcumin-Based Anticancer Agents, J. Med. Chem., 58(11): 4713–4726 (2015). |
[9] | Acdllabs Advanced Chemistry Development, “ACD Chemsketch,” 2010, 1994: 10.0. |
[10] | H. B. S. et G. E. S. M. J. Frisch, G. W. Trucks, Gaussian 09, Revision A.02. [Online]. Available: Gaussian, Inc., Wallingford CT, 2009. |
[11] | Addinsoft, XLSTAT, 2014, 1995: Version 2014.5.03. |
[12] | Chukwuemeka P. O., Predictive hybrid paradigm for cytotoxic activity of 1,3,4-thiadiazole derivatives as CDK6 inhibitors against human (MCF-7) breast cancer cell line and its structural modifications: rational for novel cancer therapeutics, J. Biomol. Struct. Dyn., 40 (18): 8518–8537 (022). |
[13] | Sékou D., Bamba F., Affoué Lucie B., Gbèdodé Wilfried., Assongba Gaston K., El-Hadji Sawaliho B., Study by Quantum Chemical of Relationship between Electronic Structure and SecA Inhibitory Activity of a Series 5-cyano Thiouracil Derivatives, J. Mater. Phys. Chem., 10(2): 43–48 (2022). |
[14] | Konate F., Diarrrassouba F., Dembele G. S., Guy-Richard Koné M., Konaté B., Ziao N., Elaboration of a Predictive Qsar Model of the Anti-Paludial Activity of a Series of Dihydrothiophenone Molecules at Theory Level B3LYP/ 6-31G (d, p), Chem. Sci. Int. J., 30(8): 1–12 (2021). |
[15] | Diarrassouba F., Bamba K., Koné M., Kouamé K. K. R., Determination of molecular descriptors influencing the first reduction potential of a family of Tetracyanoquinodimethane molecules at HF / 6-31G (d, p) theory level 6 186–211 (2022). |
[16] | Songuigama C., QSAR, Docking Studies and in Silico Admet Prediction of 1, 10- Phenanthrolinone Derivatives with Antitubercular Activities, 15 17–25 (024). |
[17] | Koné M. G.-R., Modeling of a Series of Dihydropyrazole Derivatives with Antiproliferative Activity by Quantum Chemical Methods, Chem. Sci. Int. J., 32(4): 24–38, (2023). |
[18] | N’dri J S., Quantitative Structure-Activity Study against Plasmodium falciparum of a Series of Derivatives of Azetidine-2-Carbonitriles by the Method of Density Functional Theory, Mediterr. J. Chem., 11(2): 162 (2021). |
[19] | De P., Kar S., Ambure P., Roy K., Prediction reliability of QSAR models: an overview of various validation tools, Arch. Toxicol., 96(5): 1279–1295(2022). |
[20] | Pal R., Patra S G., Chattaraj P K., Quantitative Structure–Toxicity Relationship in Bioactive Molecules from a Conceptual DFT Perspective, Pharmaceuticals, 15(11) (2022). |
[21] | Soufi H., Multi-combined QSAR, molecular docking, molecular dynamics simulation, and ADMET of Flavonoid derivatives as potent cholinesterase inhibitors J. Biomol. Struct. Dyn., 42(12): 6027–6041(2024). |
[22] | Dutschmann T M., Schlenker V., Baumann K., Chemoinformatic regression methods and their applicability domain, Mol. Inform., 43(7): 1–24(024). |
[23] | Moussaoui M., Design and Optimization of Quinazoline Derivatives as Potent EGFR 2 Inhibitors for Lung Cancer Treatment: A Comprehensive QSAR, 3 ADMET, and Molecular Modeling Investigation, (2024). |
[24] | Karadžić Banjac M., Kovačević S., Podunavac-Kuzmanović S., Jevrić L., Chemometric Modeling of Bioconcentration Factor of 6-Chloro-1,3,5-Triazine Derivatives Based on Mlr-Qspr Approach, Acta Period. Technol., 55 203–213 (2024). |
[25] | Monter-Pozos A.; González-Estrada E., On testing the skew normal distribution by using Shapiro–Wilk test, J. Comput. Appl. Math., 440 1–26 (2024). |
[26] | Hammoudan I., Chtita S., Bakhouch M., Temsamani D R., QSAR study of a series of peptidomimetic derivatives towards MERS-CoV inhibitors, Moroccan J. Chem., 10(3): 405–416 (2022). |
[27] | Király P., Kiss R., Kovács D., Ballaj A., Tóth G., The Relevance of Goodness-of-fit, Robustness and Prediction Validation Categories of OECD-QSAR Principles with Respect to Sample Size and Model Type, Mol. Inform., 41(11): 1–14, (2022). |