[1] | B.B. Sabir, S. Wild, J. Bai; “Metakaolin and Calcined Clays as Pozzolans for Concrete: A Review,” Cement and Concrete Composites, 2001, 23(6), 441-454. DOI: [10.1016/S0958-9465(00)00092-5] |
[2] | B. Samet, T. Mnif, M. Chaabouni; “Use of Kaolinitic Clay as a Pozzolanic Material for Cements: Formulation of Blended Cement,” Cement and Concrete Composites, 2007, 29(10), 741-749. DOI: [10.1016/j.cemconcomp.2007.04.012] |
[3] | B. Kerkhoff, S.H. Kosmatka, B. Kerkhoff, W.C. Panarese; “Design and Control of Concrete Mixtures”, 17th edition, Portland Cement Association, Skokie, IL, 2016. |
[4] | L. Hellar-Kallai, “Thermally Modified Clay Minerals,” Handbook of Clay Science: Development in Clay Science, B. K. G. Bergaya Theng, G. Legaly, eds., Elsevier, 2006, 289-308. |
[5] | G. Habert, C. Billard, P. Rossi, C. Chen, N. Roussel; “Cement Production Technology Improvement Compared to Factor 4 Objectives”, Cement and Concrete Research, 2010, 40(5), 820-826. DOI: [10.1016/j.cemconres.2009.09.031] |
[6] | O. Izvekova, V. Roy, V. Murgul; “Green Technologies in the Construction of Social Facilities”, Procedia Engineering, 2016, 165, 1806 -1811. DOI: [10.1016/j.proeng.2016.11.926] |
[7] | C. Meyer; “The Greening of the Concrete Industry”, Cement and Concrete Composites, 2009, 31(8), 601-605. DOI: [10.1016/j.cemconcomp.2008.12.010] |
[8] | R. Maddalena, J.J. Roberts, A. Hamilton; “Can Portland Cement be Replaced by Low-Carbon Alternative Materials? A study on the Thermal Properties and Carbon Emissions of Innovative Cements”, Journal of Cleaner Production, 2018, 186, 933-942. DOI: [10.1016/j.jclepro.2018.02.138] |
[9] | J. Di Filippo, J. Karpman, J.R. DeShazo, “The Impacts of Policies to Reduce CO2 Emissions within the Concrete Supply Chain”, Cement and Concrete Composites, 2019, 101, 67-82. DOI: [10.1016/j.cemconcomp.2018.08.003], |
[10] | H. Iglińskia, M. Babiak; “Analysis of the Potential of Autonomous Vehicles in Reducing the Emissions of Greenhouse Gases in Road Transport”, Procedia Engineering, 2017, 192, 353- 358. DOI: [10.1016/j.proeng.2017.06.061] |
[11] | Y. Cancio Díaz, S. Sánchez Berriel, U. Heierli, A.R. Favier, I.R. Sánchez Machado, K.L. Scrivener, J.F.M. Hernandez, G. Habert; “Limestone Calcined Clay Cement as a Low-Carbon Solution to Meet Expanding Cement Demand in Emerging Economies”, Development Engineering, 2017, 2, 82–91. DOI: [10.1016/j.deveng.2017.06.001] |
[12] | S. Guggenheim, R.T. Martin; “Definition of Clay and Clay Minerals: Joint Report of the AIPEA Nomenclature and CMS Nomenclature Committee,” Clays and Clay Minerals, 1995, 43(2), 255-256. DOI: [10.1346/CCMN.1995.0430213] |
[13] | S. Guggenheim, J.M. Adams, D.C. Bain, F. Bergaya, M.F. Brigatti, V.A. Drits, M.L.L. Formoso, E. Galan, T. Kogure, H. Stanjek; “Summary of Reommendations of Nomenclature Committees Relevant to Clay Mineralogy: Report of the Association 209 Internationale Pour L’etude des Argiles (AIPEA) Nomenclature Committee 2006,” Clays and Clay Minerals, 2006, 54(6), 761-772. DOI: [10.1346/CCMN.2006.0540610] |
[14] | C.H. Zhou, J. Keeling; “Fundamental and Applied Research on Clay Minerals: From Climate and Environment to Nanotechnology,” Applied Clay Science, 2013, 74, 3-9. DOI: [10.1016/j.clay.2013.02.013] |
[15] | E. Mendelovici; “Comparative Study of the Effect of Thermal and Mechanical Treatments on the Structures of Clay Mineral,” Journal of Thermal Analysis, 1997, 49(3), 1385-1397. DOI: [10.1007/ BF01983697] |
[16] | R. Fernandez, F. Martirena, K.L. Scrivener; “The Origin of the Pozzolanic Activity of Calcined Clay Minerals: A Comparison between Kaolinite, Illite and Montmorillonite,” Cement and Concrete Research, 2011, 41(1), 113-122. DOI: [10.1016/j.cemconres.2010.09.013] |
[17] | H. S. Wong, H. A. Razak, “Efficiency of Calcined Kaolin and Silica Fume as Cement Replacement Material for Strength Performance,” Cement and Concrete Research, 2005, 35(4), 696-702. DOI: [10.1016/j.cemconres.2004.05.05] |
[18] | M. Bediako, S.S. Purohit, J.T. Kevern, “Investigation into Ghanian Calcined Clay as Supplementary Cementitious Material” ACI. Materials Journal, 2017, 114(6), 889-896. DOI: [10.14359/51700896] |
[19] | M.W. Anderson, M. Teisl, C. Noblet; “Giving Voice to the Future in Sustainability: Retrospective Assessment to Learn Prospective Stakeholder Engagement,” Ecological Economics, 2012, 84, 1-6. DOI: [10.1016/j.ecolecon.2012.09.002] |
[20] | ASTM C1437-15 Standard Test Method for Flow of Hydraulic Cement Mortar. |
[21] | ASTM C187-16 Standard Test Method for Amount of Water Required for Normal Consistency of Hydraulic Cement Paste. |
[22] | ASTM C109 Standard Test Method for Compressive Strength of Hydraulic Cement Mortars. ASTM Int. DOI: [10.1520/C0109] |
[23] | ASTM C1585 Standard Test Method for Mesurement of Rate Absorption of Water by Hydraulic-Cement Concretes Annu B ASTM Standard, 2004, 04 (147), 1-6. |
[24] | B. Walkley, J.L. Provis; “Solid-State Nuclear Magnetic Resonance Spectroscopy of Cements”, Materials Today Advances, 2019, 1, 100007:1-42. DOI: [10.1016/j.mtadv.2019.100007] |
[25] | J.R. Houston, R.S. Maxwell, S.A. Carroll; “Transformation of meta-Stable Calcium Silicate Hydrates to Tobermorite: Reaction Kinetics and Molecular Structure from XRD and NMR Spectroscopy”, Geochemical Transactions, 2009, 10, 1-14. DOI: [10.1186/1467-4866-10-1] |
[26] | A. Favier, G. Habert, N. Roussel, J.-B. d'Espinose de Lacaillerie; “A Multinuclear Static NMR Study of Geopolymerisation”, Cement and Concrete Research, 2015, 75, 104-109. DOI: [10.1016/j.cemconres.2015.03.003] |
[27] | B. Walkley, S.J. Page, G.J. Rees, J.L. Provis, J.V. Hanna, “Nanostructural Development of Synthetic CaO-(Na2O)-Al2O3-SiO2-H2O Gels Revealed by Multinuclear MQMAS NMR”, The Journal of Physical Chemistry C, 2020, 124(2), 1681-1694. DOI: [10.1021/acs.jpcc.9b10133] |
[28] | J. Skibsted, E. Henderson, H.J. Jakobsen; “Characterization of Calcium Aluminate Phases in Cements by 27Al MAS NMR Spectroscopy,” Inorganic Chemistry, 1993, 32(6), 1013-1027. DOI: [10.1021/ ic00058a043] |
[29] | J. Rocha, J.D. Pedrosa, D.E. Jesus; “27Al Satellite Transition MAS-NMR Spectroscopy of Kaolinite”, Clay Minerals, 1994, 29(2), 287-291. DOI: [10.1180/claymin.1994.029.2.14] |
[30] | R. Blinc, M. Burgar, G. Lahajnar, M. Rozmarin, V. Rutar, I. Kocuvan, J. Ursic; “NMR Relaxation Study of Adsorbed Water in Cement and C3S Pastes”, Journal of American Ceramic Society, 1978, 61(1,2), 35-37. DOI: [10.1111/j.1151-2916.1978.tb09224.x] |
[31] | L. Schreiner, J. Mactavish, L. Miljkovic, M. Pintar, R. Blinc, G. Lahajnar, D. Lasic, L.W. Reeves; “NMR Line Shape-Spin-Lattice Relaxation Correlation Study of Portland Cement Hydration”, Journal of American Ceramic Society, 1985, 68(1), 10-16. DOI: [10.1111/j.1151-2916.1985.tb15243.x] |
[32] | T.F. Sevelsted, J. Skibsted; “Carbonation of C–S–H and C–A–S–H Samples Studied by 13C, 27Al and 29Si MAS NMR Spectroscopy”, Cement and Concrete Research, 2015, (71), 56-65. DOI: [10.1016/j.cemconres.2015.01.019] |
[33] | R.A. Hanna, P.J. Barrie, C.R. Cheeseman, C.D. Hills, P.M. Buchler, R. Perry; “Solid State 29Si and 27Al NMR and FTIR Study of Cement Pastes Containing Industrial Wastes and Organics,” Cement and Concrete Research, 1995, 25(7), 1435-1444. DOI: [10.1016/0008-8846(95)00138-3] |
[34] | T.T. Tran, S.A. Bernal, D. Herfort, J. Skibsted; “Characterization of the Network Structure of Alkali-Activated Aluminosilicate Binders by Single- and Double-Resonance 29Si {27Al} MAS NMR Experiments”, in: M.A.T.M. Broekmans (Ed.)”, Proceedings of the 10th International Congress for Applied Mineralogy, Trondheim, 2011, 707-715. |
[35] | S. Greiser, G.J.G. Gluth, P. Sturm, C. Jager; “29Si{27Al}, 27Al{29Si} and 27Al{1H} Double-Resonance NMR Spectroscopy Study of Cementitious Sodium Aluminosilicate Gels (Geopolymers) and Gelezeolite Composites”, RSC Advanced, 2018, 8(70), 40164-40171. DOI: [10.1039/C8RA09246J] |
[36] | D.S. Klimesch, G. Lee, A. Ray, M.A. Wilson; “Metakaolin Addition in Autoclaved Cement-Quartz Pastes: A 29Si and 27Al MAS NMR Investigation,” Advances in Cement Research, 1998, 10(3), 93-99. DOI: [10.1680/adcr.1998.10.3.93] |
[37] | P. Pena, J.M. Rivas-Mercury, A.H. de Aza, X. Turrillas, I. Sobrados, J. Sanz; “Solid State 27Al and 29Si NMR Characterization of Hydrates Formed in Calcium Aluminate-Silica Fume Mixtures,” Journal of Solid State Chemistry, 2008, 181(8), 1744-1752. DOI: [10.1016/j.jssc.2008.03.026] |
[38] | A. Samoson; “Satellite Transition High-Resolution NMR of Quadrupolar Nuclei in Powders”, Chemical Physics Letters, 1985, 119, 29-32. DOI: [10.1016/0009-2614(85)85414-2] |
[39] | J. Skibsted, N.C. Nielsen, H. Bildsøe, H.J. Jakobsen, “Satellite Transitions in MAS NMR Spectra of Quadrupolar Nuclei”, Journal of Magnetic Resonance, 1991, 95(1), 88-117. DOI: [10.1016/0022-2364(91)90327-P] |
[40] | C. Jager, “Satellite Transition Spectroscopy of Quadrupolar Nuclei, in: B. Blumich, R. Kosfeld (Eds.), NMR Basic Principles and Progress: Solid-State NMR II, Springer-Verlag, Berlin, 1994, 135. |
[41] | A. Medek, J.S. Harwood, L. Frydman, “Multiple-Quantum Magic-Angle Spinning NMR: A New Method for the Study of Quadrupolar Nuclei in Solids”, Journal of the American Chemical Society, 1995, 117(51), 12779-12787. DOI: [10.1021/ja00156a015] |
[42] | A.J. Vega, G.W. Scherer; “Study of Structural Evolution of Silica Gel using 1H and 29Si NMR”, Journal of Non-Crystaline Solids, 1989, 111(2,3), 153-166. DOI: [10.1016/0022-3093(89)90276-7] |
[43] | W. Liua, Y.-Q. Lia, L.-P. Tangb, Z.-J. Dongc; “XRD and 29Si MAS NMR Study on Carbonated Cement Paste under Accelerated Carbonation using Different Concentration of CO2”, Materials Today Communications, 2019, 19, 464-470. DOI: [10.1016/j.mtcomm.2019.05.007] |
[44] | M. Luhmer, J.B. d’Espinose, H. Hommel, A.P. Legrand; “High-resolution 29Si Solid-State NMR Study of Silicon Functionality Distribution on the Surface of Silicas”, Magnetic Resonance Imaging, 1996, 14(7,8), 911-913. DOI: [10.1016/S0730-725X(96)00180-4] |
[45] | J.F. Stebbins, M. Kanzaki; “Local Structure and Chemical Shifts for Six-Coordinated Silicon in High-Pressure Mantel Phases”, Science, 1991, 251(4991), 294-298. DOI: [10.1126/science.251.4991.294] |
[46] | J. Hjorth, J. Skibsted, H.J. Jakobsen, “29Si MAS NMR Studies of Portland Cement Components and Effects of Microsilica on the Hydration Reaction”, Cement and Concrete Research, 1988, 18(5), 789–798. DOI: [10.1016/0008-8846(88)90104-4] |
[47] | S. Thomas, K. Meise-Gresch, W. Müller-Warmuth, I. Odler; “MAS NMR Studies of Partially Carbonated Portland Cement and Tricalcium Silicate Pastes”, Journal of American Ceramic Society, 2005, 76, 1998-2004. DOI: [10.1111/j.1151-2916.1993.tb08323.x] |
[48] | Y. Okada, H. Ishida, T. Mitsuda; “29Si NMR Spectroscopy of Silicate Anions in Hydrothermally Formed C-S-H”, Journal of the American Ceramic Society, 1994, 77(3), 765-768. DOI: [10.1111/j.1151-2916.1994.tb05363.x] |
[49] | C.L. Edwards, L.B. Alemany, A.R. Barron; “Solid-State 29Si NMR Analysis of Cements: Comparing Different Methods of Relaxation Analysis for Determining Spin-Lattice Relaxation Times to Enable Determination of the C3S/C2S Ratio”, Industrial & Engineering Chemistry Research, 2007, 46(15), 5122-5130. DOI: [10.1021/ie070220m] |
[50] | P. Rejmak, J.S. Dolado, M.J. Stott, A. Ayuela; “29Si NMR in Cement: A Theoretical Study on Calcium Silicate Hydrates”, The Journal of Physical Chemistry C, 2012, 116(17), 9755-9761. DOI: [10.1021/jp302218j] |
[51] | Q. Li, A.P. Hurt, N.J. Coleman; “The Application of 29Si NMR Spectroscopy to the Analysis of Calcium Silicate-Based Cement using Biodentine™ as an Example”, Journal of Functional Biomaterials, 2019, 10(2), 25:1-18. DOI: [10.3390/jfb10020025] |
[52] | X. Cong, R.J. Kirkpatrick; “1H-29Si CPMAS NMR Study of the Structure of Calcium Silicate Hydrate”, Advances in Cement Research, 1995, 7(27), 103-111. DOI: [10.1680/adcr.1995.7.27.103] |
[53] | A. Mendes, W.P. Gates, J.G. Sanjayan, F. Collins; “NMR, XRD, IR and Synchrotron NEXAFS Spectroscopic Studies of OPC and OPC/Slag Cement Paste Hydrates,” Materials and Structures, 2011, 40(10), 1773-1791. DOI: [10.1617/s11527-011-9737-6] |
[54] | J. Bensted, S.P. Varma; “Some Applications of Infrared and Raman Spectroscopy in Cement Industry (Part 3: Hydration of Portland Cement and its Constituents)”, Cement Technology, 1974. |
[55] | S.N. Ghosh, A.K. Chatterje; “Absorption and Reflection Infrared Spectra of Major Cement Minerals, Clinker, and Cements”, Journal of Materials Science, 1974, 9, 1577-1584. DOI: [10.1007/BF00540754] |
[56] | S.N. Ghosh, S.K. Handoo; “Infrared and Raman Spectral Studies in Cement and Concrete (review)”, Cement and Concrete Research, 1980, 10(6), 771-782. DOI: [10.1016/0008-8846(80)90005-8] |
[57] | M. Horgnies, J. J. Chen, C. Bouillon; “Overview about the Use of Fourier Transform Infrared Spectroscopy to Study Cementitious Materials”, WIT Transactions on Engineering Sciences, 2013, 77, 251-262. DOI: [10.2495/MC130221] |
[58] | T.L. Hughes, C.M. Methven, T.G.J. Jones, S.E. Pelham, P. Fletcher, C. Hall; “Determining Cement Composition by Fourier Transform Infrared Spectroscopy”, Advanced Cement Based Materials, 1995, 2(3), 91-104. DOI: [10.1016/1065-7355(94)00031-X] |
[59] | D.D. Prasad, K. Ravande; “Fourier Transformed–Infrared Spectroscopy (FT-IR) Studies on the Concrete/Cement Mortar Mass made of cent percentage Recycled Coarse and Fine Aggregates”, International Journal of Advanced Research in Engineering and Technology, 2021, 12(1), 387-400. DOI: [10.34218/IJARET.12.1.2021.034] |
[60] | V.S. Kashyap, U. Agrawal, K. Arora, G. Sancheti; “FTIR Analysis of Nanomodified Cement Concrete Incorporating Nano Silica and Waste Marble Dust”, IOP Conf. Series: Earth and Environmental Science, 2021, 796, 012022: 1-8. DOI: [10.1088/1755-1315/796/1/012022] |
[61] | A. Lada; “Analysis of Dentistry Cements Using FTIR Spectroscopy”, Science, Technology and Innovation, 2020, 11(4), 33–39. DOI: [10.5604/01.3001.0014.8103] |
[62] | M. Chollet, M. Horgnies; “Analyses of the Surfaces of Concrete by Raman and FT-IR Spectroscopies: Comparative Study of Hardened Samples after Demoulding and after Organic Post-Treatment”, Surface and Interface Analysis, 2011, 43(3), 714-725. DOI: [10.1002/sia.3548] |
[63] | I. García Lodeiro, D. E. Macphee, A. Palomo, A. Fernández-Jiménez; “Effect of Alkalis on Fresh C-S-H Gels FTIR Analysis”, Cement and Concrete Research, 2009, 39(3), 147-153. DOI: [10.1016/j.cemconres.2009.01.003] |
[64] | R. Ylmén, U. Jäglid, B. M. Steenari, I. Panas; “Early Hydration and Setting of Portland Cement Monitored by IR, SEM and Vicat Techniques”, Cement and Concrete Research, 2009, 39(5), 433-439. DOI: [10.1016/j.cemconres.2009.01.017] |
[65] | R. Ylmen, L. Wadso, I. Panas; “Insights into Early Hydration of Portland Limestone Cement from Infrared Spectroscopy and Isothermal Calorimetry,” Cement and Concrete Research, 2010, 40(10), 1541-1546. DOI: [10.1016/j.cemconres.2010.06.008] |
[66] | P. Yu, R.J. Kirkpatrick, B. Poe, P.F. McMillan, X. Cong; “Structure of Calcium Silicate Hydrate (C-S-H): Near, Mid and Far-Infrared Spectroscopy”, Journal of the American Ceramic Society, 1999, 82(3), 742-748. DOI: [10.1111/j.1151-2916.1999.tb01826.x] |
[67] | A. Hidalgo Lopez, J.L.G. Calvo, J.G. Olmo, S. Petit, M.C. Alonso; “Microstructural Evolution of Calcium Aluminate Cements Hydration with Silica Fume and Fly Ash Additions by SEM, and Mid and Near-Infrared Spectroscopy”, Journal of the American Ceramic Society, 2008, 91(4), 1258-1265. DOI: [10.1111/j.1551-2916.2008.02283.x] |
[68] | E. V. Tararushkin, T. N. Shchelokova, V. D. Kudryavtseva; “A study of Strength Fluctuations of Portland Cement by FTIR Spectroscopy”, CAMSTech-2020, IOP Conf. Series: Materials Science and Engineering, 2020, 919, 022017:1-4. DOI: [10.1088/1757-899X/919/2/022017] |