[1] | H. K. Onnes, "Further experiments with liquid helium. C. On the change of electric resistance of pure metals at very low temperatures etc. IV. The reistance of pure mercury at helium temperature," Proceedings of Royal Netherlands Academy of Arts and Sciences, vol. 13, no. II, pp. 1274 - 1276, 1911. |
[2] | P. Kapitza, "Viscosity of Liquid Helium below the lamda-Point," Nature, vol. 141, pp. 74 - 74, 8 Janurary 1938. |
[3] | P. Kapitza, "The study of heat transfer in helium II," J. Phys. USSR., vol. 4, p. 181, 1941. |
[4] | W. Keesom and A. Keesom, "On the heat conductivity of liquid helium," Physica, vol. 3, no. 5, pp. 359 -- 360, 1936. |
[5] | V. Peshkov, "Second Sound in Helium II," Soviet Physics JETP, vol. 11, no. 3, pp. 580-584, 1960. |
[6] | L. Tisza, "Transport Phenomena in Helium II," Nature, vol. 141, p. 913, 21 May 1938. |
[7] | L. Landau, "Theory of the Superfluidity of Helium II," Physical Review, vol. 60, no. 356, 15 August 1941. |
[8] | D. Toussanit and F. Wilczek, "Particle-antiparticle annihilation in diffusive motion," Journal of Chem. Phys, vol. 78, no. 5, pp. 2642-2647, 1983. |
[9] | E. Ben-Naim, P. Krapivsky and F. L. a. S. Redner, "Kinetics of Ballistically-Controlled Reactions," J. Physical Chemistry, vol. 98, no. 30, pp. 7284-7288, 1994. |
[10] | R. Kopelman, "Fractal Reaction Kinetics," Science, vol. 241, no. 4873, pp. 1620-1626, 1988. |
[11] | B. H. Good, M. J. McDonald, J. E. Barrick, R. E. Lenski and M. M. Desai, "The dynamics of molecular evolution over 60,000 generations," Nature, vol. 551, pp. 45-50, 2017. |
[12] | W. Wei, Q.-C. Ho, M. G. Behringer, S. F. Miller, G. Bcharah and M. Lynch, "Rapid evolution of mutation rate and spectrum in response to environmental and population-genetic challenges," Nature Communications, vol. 13, no. 4752, pp. 1-10, 2022. |
[13] | P. Lowdin, "Proton tunneling in DNA and its biological implications," in Advances in Quantum Chemistry, vol. 2, Academic Press, 1966. |
[14] | I. Kimsey, E. Szymanski, W. Zahurancik, A. Shakya, Y. Xue, C. Chu, B. Sathyamoorthy, Z. Suo and H. Al-Hashimi, "Dynamic basis for dG. dT misincorporation via tautomerization and ionization," Nature, vol. 554, no. 7691, pp. 195-201, 2018. |
[15] | L. Slocombe, M. Sacchi and J. Al-Khalili, "An open quantum systems approach to proton tunnelling in DNA," Nature communications, Physics, vol. 5, no. 109, pp. 1-8, 2022. |
[16] | H. Chen, M. Toco, J. Son, S. Jiang, C. Larson and Q. Gao, "Gloabl nanotechnology development from 1991 to 2012 patents, scientific publications and effect of NSF funding," J. Nanopart Res, vol. 15, no. 1951, pp. 1-21, 2013. |
[17] | A. J. Heinrich, W. D. Oliver, L. Vandersypen, A. Ardavan, R. Sessoli, D. Loss, A. B. Jayich, J. F.-. Rossier, A. Laucht and A. Morello, "Quantum-Coherent Nanoscience," Nature Nanotechnology, vol. 16, pp. 1318-1329, 2021. |
[18] | K. Zhao and H. Wu, "Fountain effect of ice-like water across nanotube at room temperature," Physical Chemistry Chemical Physics, vol. 19, no. 42, pp. 28496-28501, 2017. |
[19] | K. Zhao and H. Wu, "Structure-dependent water transport across nanopores of carbon nanotubes: toward selective gating upon temperature regulation," Physical Chemistry Chemical Physics, vol. 17, pp. 10343-10347, 2015. |
[20] | T. Nihira and T. Iwata, "Thermal Resistivity Changes in Electron-Irradiated Pyrolytic Graphite," Japanese Journal of Applied Physics, vol. 14, no. 8, pp. 1099-1104, 1975. |
[21] | M. Holland, C. Klein and W. Straub, "The lorenz number of graphite at very low temperatures," Journal of Physics and Chemistry of Solids, vol. 27, no. 5, pp. 903-906, 1966. |
[22] | S. C. a. Q. W. a. C. M. a. J. K. a. H. Z. a. K. C. a. W. C. a. A. A. B. a. R. S. Ruoff, "Thermal conductivity of isotopically modified graphene," Nature Materials, vol. 11, pp. 203-207, 2012. |
[23] | A. Keerthi, S. Goutham, Y. You, P. Iamprasertkun, R. Dryfe, A. K. Geim and B. Radha, "Water friction in nanofluidic channels made from two-dimensional crystals," Nature Communications, vol. 12, no. 3092, pp. 1-8, 2021. |
[24] | G. Algara-Siller, O. Lehtinen, F. Wang, R. Nair, U. Kaiser, H. Wu, A. Geim and I. Grigorieva, "Square ice in graphene nanocapillaries," Nature, vol. 519, no. March, pp. 443-445, 2015. |
[25] | G. A. Ozin and A. C. Arsenault, Nanochemistry: A Chemical Approach to Nanomaterials, Royal Society of Chemistry, 2005, p. 641. |
[26] | G. Sergeev and K. Klabunde, Nanochemistry, Elsevier, 2013. |
[27] | W. Chen, "Heat transfer at speed of sound," International Journal of Heat and Mass Transfer, vol. 177, no. 10, pp. 1-13, 2021. |
[28] | A. C. Engineering, Combustion Fossil Power, J. G. Singer, Ed., Windsor, CT: Rand McNally, 1991, p. 1400. |
[29] | S. Farokhi, Aircraft Propulsion, Kansas: Wiley, 2014, p. 2007. |
[30] | D. P. L. Gregory P. Bewley and K. R. Sreenivasan, "Characterisation of superfluid vortices in helium II," Proceedings of National Academy of Science, vol. 105, no. 37, pp. 13707-13710, 2008. |
[31] | R. L. Powell and W. A. Blanpied, "Thermal Conductivity of Metals and Alloys at Low Temperatures," US Department of Commerce, Washington, DC, 1954. |
[32] | J. S. Brooks and R. J. Donnelly, "The calculated thermodynamic properties of superfluid helium-4," Journal of Physical and Chemical Reference Data, vol. 6, no. 1, pp. 51 - 104, 1977. |
[33] | D. Lotnyk, A. Eyal, N. Zhelev, T. Abhilash, E. Smith, M. Terilli, J. Wilson, E. Mueller, D. Einzel, J. Saunders and J. Parpia, "Therml transport of helium-3 in a strongly confining channel," Nature Communications, vol. 11, no. 4843, pp. 1-12, 2020. |
[34] | C. Adkins, Equilibrium thermodynamics (Third Edition), London: Cambridge University Press, 1983. |
[35] | D. Kondepudi and I. Prigogine, Modern Thermodynamics: From Heat Engines to Dissipative Structures (1st Ed), NYC: John Wiley & Sons, 1998, p. 508. |
[36] | R. B. Bird, W. E. Stewart and E. N. Lightfoot, Transport Phenomena, New York: John Wiley & Sons, 1960. |
[37] | D. T. Blackstock, Fundamentals of Physical Acoustics, New York, New Yoek: John Wiley & Sons, Inc, 2000, p. 541. |
[38] | A. Morgans and I. Duran, "Entropy noise: A review of theory, progress and challenges," Journal of Spray and Combustion Dynamics, vol. 8, no. 4, pp. 285-298, 2016. |