[1] | Mandal, S. K., Nag, K., 1984, Synthesis of Phenoxo-bridged Dicopper (II) Complexes of N-(2-Aminoalkyl) salicyl aldimines and Their Use in the Formation of Monohalogeno-complexes and Non-symmetrical Quadridentate Schiff-base Complexes, J. Chem. Soc. Dalton trans, 2839-2841. |
[2] | Ziegler, M. S., Lakshmi, K. V., Tilley, T. D., 2017, Dicopper Cu(I)Cu(I) and Cu(I) Cu(II) Complexes in Copper-Catalyzed Azide−Alkyne Cycloaddition, J. Am. Chem. Soc. 139, 5378−5386. |
[3] | Warzeska, J. M., Pritzkow, S., Wadepohl, H., Imhof, P., Smith, J. C., Kreamer, R., 2005, Catalytic Transesterification of Dialkyl Phosphates by a Bioinspired Dicopper (II) Macrocyclic Complex, J. Am. Chem. Soc. 127 (43), 15061–15070. |
[4] | Torelli, S., Belle, C., Gautier, L. I., Pierre, J. L., Saint, A. E., Latour, J. M., Le, P. L., Luneau, D., 2000, pH-Controlled Change of the Metal Coordination in a Dicopper (II) Complex of the Ligand H−BPMP: Crystal Structures, Magnetic Properties, and Catecholase Activity, Inorg. Chem. 39(16), 3526–3536. |
[5] | Tai, A. F., Margerum, L. D., Valentine, J. S., 1986, Epoxidation of olefins by iodosylbenzene catalyzed by binuclear copper(II) complexes, J. Am. Chem. Soc. 108 (16), 5006–5008. |
[6] | Amendola, V., Fabbrizzi, L., Mangano, C., Pallavicini, P., Poggi,A., Taglietti, A., 2001, Anion recognition by dimetallic cryptates, Coord. Chem. Rev. 219-221, 821–837. |
[7] | Anbu, S., Kandaswamy, M., Suthakaran, P., Murugan, V., Varghese, B., 2009, Structural, magnetic, electrochemical, catalytic, DNA binding and cleavage studies of new macrocyclic binuclear copper (II) complexes, J. Inorg. Biochem. 103 (3), 401–410. |
[8] | Raman, N., Sakthivel, A., Rajasekaran, K., 2009, Design, structural elucidation, DNA interaction and antimicrobial activities of metal complexes containing tetraazamacrocyclic Schiff bases, J. Coord. Chem. 62 (10), 1661–1676. |
[9] | Sreedaran, S., Shanmuga, B. K., Kalilur, R. A. Jagadish, L., Kaviyarasan, V., Narayanan, V., 2008, Novel unsymmetrical macrocyclic dicompartmental binuclear copper(II) complexes bearing 4- and 6-coordination sites: Electrochemical, magnetic, catalytic and antimicrobial studies, Polyhedron. 27 (13), 2931–2938. |
[10] | Fandzloch, M., Dobrzańska, L., Jezierska, J., Psurska, B. F., Wiśniewska, J., Wietrzyk, J., Manuel, S. J., Lakomska, I., 2018, In search of new anticancer drug – Dimethylsulfoxide ruthenium(III) complex with bulky triazolopyrimidine derivative and preliminary studies towards understanding the mode of action, Polyhedron. 141, 239-246. |
[11] | Wu, D., Guo, L., Li, S. J., 2020, Synthesis, structural characterization and anti-breast cancer activity,evaluation of three new Schiff base metal (II) complexes and their nanoparticles, J. Mol. Struct. 1199, 126938. |
[12] | Zhang, H., Thomas, R., Oupicky, D., Peng, F., 2008, Synthesis and characterization of new copper thiosemicarbazone complexes with an ONNS quadridentate system: cell growth inhibition, S-phase cell cycle arrest and proapoptotic activities on cisplatin-resistant neuroblastoma cells, J. Biol. Inorg. Chem. 13, 47-55. |
[13] | Yu, Y., Kalinowski, D. S., Kovacevic, Z., Siafakas, A. R., Jansson, P. J., Stefani, C., Lovejoy, D. B., Sharpe, P. C., Bernhardt, P. V., Richardson, D. R., 2009, Thiosemicarbazones from the Old to New: Iron Chelators That Are More Than Just Ribonucleotide Reductase Inhibitors, J. Med. Chem. 52, 5271-5294. |
[14] | Arguelles, M. C. R., Vazquez, S. M., Matalobos, J. S., Deibe, A. M. G., Pelizzi, C., F. Zani, F., 2010, Evaluation of the antimicrobial activity of some chloro complexes of imidazole-2-carbaldehyde semicarbazone: X-ray crystal structure of cis-NiCl2(H2L)(H2O), Polyhedron. 29, 864-870. |
[15] | Tojal, J. G., Orad, A. G., Diaz, A. A., Serra, J. L., Urtiaga, M. K., Arriortua, M. I., Rojo, T., 2001, Biological activity of complexes derived from pyridine-2-carbaldehyde thiosemicarbazone: Structure of [Co(C7H7N4S)2][NCS], J. Inorg. Biochem. 84, 271-278. |
[16] | Ayaan, U. E., Youssef, M. M., Shihry, S. A., 2009, Mn(II), Co(II), Zn(II), Fe(III) and U (VI) complexes of 2-acetylpyridine 4N-(2-pyridyl) thiosemicarbazone (HAPT); structural, spectroscopic and biological studies, J. Mol. Struct. 936, 213-219. |
[17] | Prabhakaran, R., Kalaivani, P., Poornima, P., Dallemer, F., Paramaguru, G., Padma, V. V., Renganathan, R., Huange, R., Natarajan, K., 2012, One pot synthesis of structurally different mono and dimeric Ni(II) thiosemicarbazone complexes and N-arylation on a coordinated ligand: a comparative biological study , Dalton Trans. 41, 9323-9336. |
[18] | Lukmantara, A. Y., Kalinowski, D. S., Kumar, N., Richardson, D. R., 2013, Synthesis, and biological evaluation of substituted 2-benzoylpyridine thiosemicarbazones: Novel structure–activity relationships underpinning their anti-proliferative and chelation efficacy, Bioorg. Med. Chem. Lett. 23, 967-974. |
[19] | Serda, M., Kalinowski, D. S., Wilczkiewicz, A. M., Musiol, R., Szurko, A., Ratuszna, A., Pantarat, N., Kovacevic, Z., Merlot, A. M., Richardson, D. R., Polanski, J., 2012, Synthesis and characterization of quinoline-based thiosemicarbazones and correlation of cellular iron-binding efficacy to anti-tumor efficacy, Bioorg. Med. Chem. Lett. 22, 5527-5531. |
[20] | Walcourt, A., Loyevsky, M., Lovejoy, D. B., Gordeuk, V. R., D. R. Richardson, D. R., 2004, Novel aroylhydrazone and thiosemicarbazone iron chelators with anti-malarial activity against chloroquine-resistant and -sensitive parasites, Int. J. Biochem. Cell Biol. 36, 401-407. |
[21] | (a) Miyasaka, H., Saitoh, A., Abe, S., 2007, Magnetic assemblies based on Mn(III) salen analogues, Coord. Chem. Rev. 251, 2622-2664. (b) Yazigi, D. V., Aravena, D., Spodine, E., Ruiz, E., Alvarez, S., 2010, Structural and electronic effects on the exchange interactions in dinuclear bis(phenoxo)-bridged copper (II) complexes, Coord. Chem.Rev. 254, 2086-2095. (c) Novoa, N., Justaud, F., Hamon, P., Roisnel, T., Cador, O., Guennic, B. L., Manzur, C., Carrillo, D., Hamon, J. R., 2015, Doubly phenoxide-bridged binuclear copper(II) complexes with ono tridentate schiff base ligand: Synthesis, structural, magnetic and theoretical studies, Polyhedron 86, 81-88. (d) Costes, J. P., S. Padilla, S. T., Oyarzabal, I., Gupta, T., Duhayon, C., Rajaraman, G., Colacio, E., 2016, Effect of Ligand Substitution around the DyIII on the SMM Properties of Dual-Luminescent Zn–Dy and Zn–Dy–Zn Complexes with Large Anisotropy Energy Barriers: A Combined Theoretical and Experimental Magnetostructural Study, Inorg. Chem. 55, 4428-4440. |
[22] | (a) Lacroix, P. G., Malfant, I., Lepetit, C., 2016, Second-order nonlinear optics in coordination chemistry: An open door towards multi-functional materials and molecular switches, Coord. Chem. Rev. 308, 381-394; (b) Nayar, C. R., Ravikumar, R., 2014, Review: Second order nonlinearities of Schiff bases derived from salicylaldehyde and their metal complexes J. Coord. Chem. 67, 1-16. (c) Lacroix, P. G., 2001, Eur. J. Inorg. Chem., 339. (d) Bella, S. D., 2001, Second-order nonlinear optical properties of transition metal complexes, Chem. Soc. Rev. 30, 355-366. |
[23] | (a) Rigamonti, L., Demartin, F., Forni, A., Righetto, S., Pasini, A., 2006, Copper (II) Complexes of salen Analogues with Two Differently Substituted (Push−Pull) Salicylaldehyde Moieties. A Study on the Modulation of Electronic Asymmetry and Nonlinear Optical Properties, Inorg. Chem. 45, 10976-10989. (b) Gradinaru, J., Forni, A., Druta, V., Tessore, F., Zecchin, S., Quici, S., Garbalau, N., 2007, Structural, Spectral, Electric-Field-Induced Second Harmonic, and Theoretical Study of Ni(II), Cu(II), Zn(II), and VO(II) Complexes with [N2O2] Unsymmetrical Schiff Bases of S-Methylisothiosemicarbazide Derivatives, Inorg. Chem. 46, 884-895. |
[24] | Anson, C. W., Stahl, S. S., 2017, Cooperative Electrocatalytic O2 Reduction Involving Co(salophen)with p-Hydroquinone as an Electron−Proton Transfer Mediator,J. Am. Chem. Soc. 139, 18472−18475 |
[25] | (a) Nie, Y., Li, L., Wei, Z., 2015 Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction, Chem. Soc. Rev. 44, 2168-2201.(b) Shao, M., Chang, Q., Dodelet, J. P., Chenitz, R., 2016, Recent Advances in Electrocatalysts for Oxygen Reduction ReactionChem. Rev. 116, 3594-3657. |
[26] | Babcock, G. T., Wikström, M., 1992, Oxygen activation and the conservation of energy in cell respiration, Nature. 356, 301-309. |
[27] | Boyle, T. J., Sears, J. M., Jeffery, A., Perales, G. D., Cramer, R., Staples, O., Rheingold, A. L., Coker, E. N., Roper, T. M., Kemp, R. A., 2018, Synthesis and Characterization of Structurally Diverse Alkaline-Earth Salen Compounds for Subterranean Fluid Flow Tracking, Inorg. Chem., 57 (5), 2402–2415. |
[28] | Bhowmick, A, Islam, M., Bhowmick, R., Sarkar, M., Shibly, A., Hossain, E., 2019, Synthesis and Structure Determination of Some Schiff Base Metal Complexes with Investigating Antibacterial Activity, Am. J. Chem., 9(1): 21-25. |
[29] | Bhowmick, A C., Nath, B. D., Moim, M. I., 2019, Coordination Complexes of Transition Metals and Schiff Base with Potent Medicinal Activity, Am. J. Chem., 9(4): 109-114. |
[30] | Cisterna, J., Artigas, V., Fuentealba, M., Hamon, P., Manzur, C., Dorcet, V., Hamon, J. R., Carrillo, D., 2017, Nickel(II) and copper(II) complexes of new unsymmetrically- substitutedtetradentate Schiff base ligands: Spectral, structural, electrochemical andcomputational studies, Inorg. Chim. Acta., 462, 266–280. |
[31] | Iscen, A., Brue, C., Roberts, K. F., Kim, J., Schatz, G. C., Meade, T. J., 2019, Inhibition of Amyloid-β Aggregation by Cobalt(III) Schiff Base Complexes: A Computational and Experimental Approach, J. Am. Chem. Soc. 141, 42, 16685-16695. |
[32] | Fabbrizzi, L., 2020, Beauty in chemistry: making artistic molecules with Schiff bases, The Journal of Organic Chemistry, DOI: 10.1021/acs.joc.0c01420. |
[33] | Gusev, A. N., Kiskin, M. A., Braga, E. V., Chapran, M., Salyga, G. W., Baryshnikov, G. V., Minaeva, V. A., Minaev, B. F., Ivaniuk, K., Stakhira, P., Ågren, H., Linert, W., 2019, Novel Zinc Complex with an Ethylenediamine Schiff Base for High-Luminance Blue Fluorescent OLED Applications, J. Phy. Chem. C. 123, 18, 11850-11859. |
[34] | Handa, S., Gnanadesikan, V., Matsunaga, S., Shibasaki, M., 2010, Heterobimetallic Transition Metal/Rare Earth Metal Bifunctional Catalysis: A Cu/Sm/Schiff Base Complex for Syn-Selective Catalytic Asymmetric Nitro-Mannich Reaction, J. Am. Chem. Soc., 132, 4925–4934. |
[35] | Nolte, C., Mayer, P., Straub, B. F., 2007, Isolation of a Copper(I) Triazolide: A “Click” Intermediate, Angew. Chem., Int. Ed. 46, 2101-2103. |
[36] | Jin, L., Tolentino, D. R., Melaimi, M., Bertrand, G., 2015, Isolation of bis(copper) key intermediates in Cu-catalyzed azide-alkyne “click reaction”, Sci. Adv. 1, 1500304. |
[37] | Worrell, B. T., Malik, J. A., Fokin, V. V., 2013, Direct Evidence of a Dinuclear Copper Intermediate in Cu(I)-Catalyzed Azide-Alkyne Cycloadditions, Science. 340, 457-460. |
[38] | Parveena, H., Alatawia, R. A. S., Sayed, N. H. E., Hasan, S., Mukhtar, S., Khan, A. U., 2017, Synthesis, characterization and biological evaluation of some novel nitrogen and sulphurcontaining organometallic heterocycles, Arab. J. Chem. 10, 1098–1106. |
[39] | Bhadbhade, M. M., Srinivas, D., 1993, Effects on Molecular Association, Chelate Conformation, and Reactivity toward Substitution in Cu(S-X-salen) Complexes, salen2- = MN'-Ethylenebissalicylidenaminato), X = H, CH3O, and Cl: Synthesis, X-ray Structures, and EPR Investigations, Inorg. Chem. 32, 6122-6130. |
[40] | Hall, D., Waters, T. N., 1960, The colour isomerism and structure of some copper co-ordination compounds. Part IV. The structure of N,N′-disalicylidene-ethylenediaminecopper, J. Chem. Soc. 2644-2648. |
[41] | Nathan , L. C., Koehne, J. E., Gilmore, J. M., Hannibal, K. A., Dewhirst, W. E., Mai, T. D., 2003, The X-ray structures of a series of copper(II) complexes with tetradentate Schiff base ligands derived from salicylaldehyde and polymethylenediamines of varying chain length, Polyhedron 22, 887 /894. |
[42] | Consiglio, G., Failla, S., Finocchiaro, P., Oliveri, I. P., Bella, S. D., 2012, An Unprecedented Structural Interconversion in Solution of Aggregate Zinc(II) Salen Schiff-Base Complexes, Inorg. Chem. 51, 8409−8418. |
[43] | See, R. F., Kruse, R. A., Strub, W.M., 1998, Metal-Ligand Bond Distances in First-Row Transition Metal Coordination Compounds: Coordination Number, Oxidation State, and Specific Ligand Effects, Inorg. Chem. 37, 5369-5375. |
[44] | Cameron, S. A., Brooker, S., 2011, Metal-Free and Dicopper(II) Complexes of Schiff Base [2+2] Macrocycles Derived from 2,20-Iminobisbenzaldehyde: Syntheses, Structures, and Electrochemistry, Inorg. Chem. 50, 3697–3706. |