[1] | Belyakova, O. A.; Slovokhotova, Y. L. (2003). Structures of large transition metal clusters. Russian Chemical Bulletin. Inter. Ed., 52(11), 1-29. |
[2] | Butcher, C.P. G., Dyson, P. J., Johnson, B. F. G., Khimyak, J, McIndoe, J.S. (2003). Fragmentation of Transition Metal Carbonyl Clusters Anions: Structural Insights from Mass Spectrometry. Chem. Eur. J., 9(4), 944-950. |
[3] | Ciabatti, I. (2015). PhD Thesis. Homo- and Hetero-metal carbonyl Nanoclusters. |
[4] | Gimeno, M. C. (2008). Modern Supramolecular Gold-Metal Interactive and Applications. Edited A. Laguna, 2008. Wiley-VCH, Weinheim. |
[5] | Fehlner, T.P. and Halet, J-F, (2007). Molecular Clusters, Cambridge University Press, UK. |
[6] | Goicoechea, J. M. & Sevov, C. V. (2006). Deltahedral Germanium Cluster: Insertion of Transition-Metal Atoms and Addition of Organometallic Fragments. J. Am. Chem. Soc., 128, 4155-4161. |
[7] | Grimes, R. N. (2003). Synthesis and properties of linear, branched and cyclic metallacarborane oligomers, 75(9),1211-1218. |
[8] | Hoffmann, R. (1982). Building Bridges Between Inorganic and Organic Chemistry. Angew. Chem. Int. Ed. Engl. 21, 711-724. |
[9] | Housecroft, C.E., Sharpe, A. G., (2005). Inorganic Chemistry, 2nd Ed., Pearson, Prentice Hall, Harlow, England. |
[10] | Huang, X., Zhao, J., Chen, Z., King, R. B. (2014). Design of Three-shell Icosahedral Matryoshka Clusters A@B12@A20. Scientific Reports, 4, 1-7. |
[11] | Hughes, H. K., & Wade, K. (2000). Metal-metal and metal-ligand bond strengths in metal carbonyl clusters. Coord. Chem. Rev., 197, 191-229. |
[12] | Jemmis, E. D., Balakrishnarajan, M.M., Pancharatna, P. D. (2001a). Unifying electron counting rule for Macropolyhedral Boranes, Metallaboranes, and Metallocenes. J. Am. Chem. Soc., 123(18), 4313-4323. |
[13] | Jemmis, E. D., Balakrishnarajan, M. M. (2001b). Polyhedral boranes and elemental boron. Direct structural relations and diverse electronic requirements. J. Am. Chem. Soc., 123, 4324-4330. |
[14] | Jemmis, E. D., Balakrishnarajan, M.M., Pancharatna, P. D. (2002). Electronic Requirements for Macropolyhedral Boranes. Chem. Rev. 102(1), 93-144. |
[15] | Jemmis, E. D., Jayasree, E. G. (2003). Analogies between boron and carbon. Acc. Chem. Res., 36, 816-824. |
[16] | Jemmis, E. D. (2005). Building relationships between polyhedral boranes and elemental boron. Inorg. Chem. 18, 620-628. |
[17] | Jemmis, E. D., Jayasree, E. G., Parameswaran, P. (2006). Hypercarbons in polyhedral structures. Chem. Soc. Rev., 35, 157-168. |
[18] | Jemmis, E. D., Prasad, D. L. V. K. (2008). Unknowns in the chemistry of Boron. Current Science, 95(10), 1277-1283. |
[19] | King, R.B., Zhao, J. (2006). The isolable matryoshka nesting doll icosahedral cluster, As@Ni12@As203―, as a superatom: analogy with the jellium cluster Al13― generated in the gas phase by laser vaporization. Chem. Comm., 4204-4205. |
[20] | Kiremire, E.M.R. (2015). A Uniquebypass to the Carbonyl Cluster Nucleus Using the 14N Rule. Orient.J. Chem.31(3),1469-1476. |
[21] | Kiremire, E.M.R. (2016a). A Hypothetical Model for the Formation of Transition Metal Carbonyl Clusters Based upon 4n Series Skeletal Numbers. Int. J. Chem., 8(4), 78-110. |
[22] | Kiremire, E. M. R. (2016b). The Application of the 4n Series Method to Categorize Metalloboranes. Int. J. Chem., 8(3), 62-73. |
[23] | Kiremire, E. M. (2015d). Classification of Transition Metal Carbonyl Clusters Using the 14n Rule Derived from Number Theory. Orient. J. Chem., 31(2), 605-618. |
[24] | Kiremire, E.M.R. (2016c). The categorization and Structural Prediction of Transition Metal Carbonyl Clusters Using the 14n Series Numerical Matrix. Int. J. Chem. 8(1), 109-125. |
[25] | Kiremire, E. M. R. (2016b). A Hypothetical Model for the Formation of Transition Metal Carbonyl Clusters Based Upon 4n Series Skeletal Numbers. Int. J. Chem., 8(4), 78-110. |
[26] | Kiremire, E. M. R. (2016c). The Application of the 4n Series Method to Categorize Metalloboranes. Int. J. Chem., 8(3), 62-73. |
[27] | Kiremire, E.M.R. (2016d). Classification of Zintl Ion Clusters Using 4n Series Approach. Orient. J. Chem., 32(4), 1731-1738. |
[28] | Kiremire, E. M. R. (2017a). The Six Silent Laws of Chemical Clusters. Amer. J. Chem. 7(2), 21-47. |
[29] | Kiremire, E. M. R. (2017b). Outstanding Applications of Skeletal Numbers to Chemical Clusters. Int. J. Chem., 9(3), 28-48. |
[30] | Kiremire, E. M.R. (2017c). Boranes, Carboranes, Metalloboranes, Transition Metal Carbonyls, and Other Cluster Formulas Obey the Law of Skeletal Numbers and Their Valences. Amer. J. Chem., 7(4), 113-144. |
[31] | Kiremire, E. M.R. (2017d). Numerical Characterization of Chemical Fragments, Molecules, and Clusters Using Skeletal Numbers and Nuclearity Trees. Amer. J. Chem., 7(3), 73-96. |
[32] | Kiremire, E.M.R. Kiremire (2017e). Numerical categorization of Chemical Fragments, Molecules and Clusters Using Skeletal Numbers and Nuclearity Trees. Am. J. Chem., 7(3), 73-96. |
[33] | Kiremire, E. M. R. (2017f). The Golden Series and Clusters of Gold-unique Shapes and Bonding. 9(1), 38-57. |
[34] | Kiremire, E.M.R. (2018a). The Cluster Valence Electrons (VE) are Natural Numbers of Clusters Generated by K(N) Parameters: VE and K(N) Are Intertwined. Int. J. Chem., 10(1), 15-52. |
[35] | Kiremire, E.M.R. (2018b). The capping theory of chemical clusters based on 12N/14N Series, Int. J. Chem, 10(4), 130-154. |
[36] | Kiremire, E.M.R. (2018c). Graph Theory of Chemical Series and Broad Categorization of Clusters. Int. J. Chem., 10(1), 17-80. |
[37] | Kiremire, E.M.R. (2018d). Graph Theory of Capping Golden Clusters. Int. J. Chem., 10(1), 87-130. |
[38] | Kiremire, E.M.R. (2018e). Inside out Capping Clusters: Matryoshka series. Int. J. Chem., 10(4), 38-56 |
[39] | Kiremire, E.M.R. (2018f). Graph Theory of Chemical Series and Broad Categorization of Clusters. Int. J. Chem.,10(1),17-80. |
[40] | Lipscomb, W. N., (1963). Boron Hydrides. W. A. Bejamin, Inc., New York. |
[41] | Mednikov, E., Dahl, L. F. (2010). Syntheses, structures and properties of primarily nanosized homo/heterometallic palladium CO/PR3-ligated clusters. Phil. Trans. R. Soc., 368, 1301-1331. |
[42] | Mingos, D. M. P. (1972). A General Theory for Cluster and Ring Compounds of the Main Group and Transition Elements. Nature (London), Phys. Sci., 236, 99-102. |
[43] | Pauling, L. (1977). Structure of transition-metal cluster compounds: use of an additional orbital resulting from f, g character spd bond orbitals. Proc. Natl. Acad. Sci. USA, 74, 5235-5238. |
[44] | Rossi, F., Zanello, P. (2011). Electron Reservoir Activity of High-Nuclearity Transition Metal Carbonyl Clusters. Portugaliae Electrochimica Acta, 29(5), 309-327. |
[45] | Rudolph, R. W. (1976). Boranes and heteroboranes: a paradigm for the electron requirements of clusters? Acc. Chem. Res., 9(12), 446-452. |
[46] | Slee, F, Zhenyang, L Mingos, D. M.P. (1989). Polyhedral Skeletal Electron Pair Theory of Bare Clusters: Small Silicon Clusters. Inorg. Chem., 2256-2261. |
[47] | Stone, A (1981). New Approach to Bonding in Transition Metal Clusters and related compounds. 20, 563-571. |
[48] | Teo, B. K., Longoni, G., & Chung, F.R. K. (1984). Applications of Topological Electron-Counting Theory to Polyhedral Metal Clusters. Inorg. Chem., 23(9), 1257-1266. |
[49] | Tolman, C. A. (1972). The 16 and 18 Electron Rule in Organometallic Chemistry and Homogeneous catalysis. Chem. Soc. Rev., 337-353. |
[50] | Wade, A. (1976). Structural and Bonding Patterns in Cluster Chemistry. Adv. Inorg. Chem. Radiochem., 18, 1-66. |
[51] | Wade, K. (1971). The structural significance of the number of skeletal bonding electron-pairs in carboranes, the higher boranes and borane ions and various transition metal carbonyl cluster compounds. Chem. Commun., 792-793. |
[52] | Wade, A. (1976). Structural and Bonding Patterns in Cluster Chemistry. Adv. Inorg. Chem. Radiochem., 18, 1-66. |
[53] | Wales, D. J. (2005). Electronic Structure of Clusters in Encyclopedia of Inorganic Chemistry, 2nd Edition, Vol III. Edited, R. B. King, John Wiley and Sons, Ltd., Chichester, UK, 1506-1525. |
[54] | Welch, A. J. (2013). The significance of Wade’s rules. Chem. Commun., 49, 3615-3616. |
[55] | Xiang, W., Sikadar, D., Yap, L.W., Guo, P., Premaratne, M., Li, X., Cheng, W. (2015). Tsinghua University Press, 64-80. |