American Journal of Chemistry
p-ISSN: 2165-8749 e-ISSN: 2165-8781
2019; 9(1): 1-12
doi:10.5923/j.chemistry.20190901.01

Aklima Jahan1, Md. Ashraful Alam2, Md. Rabiul Awual3, Shamim Akhtar1
1Department of Chemistry, University of Chittagong, Chittagong, Bangladesh
2Department of Chemistry and Bioengineering, Iwate University, Morioka, Japan
3RENESA, 3-3-22 Sakuraguchi, Kobe-shi, Hyogo, Japan
Correspondence to: Aklima Jahan, Department of Chemistry, University of Chittagong, Chittagong, Bangladesh.
| Email: | ![]() |
Copyright © 2019 The Author(s). Published by Scientific & Academic Publishing.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

The volumetric and acoustic properties for the binary mixtures of N,N-dimethylformamide with two polar solvents 2-butanol and 2-pentanol have been measured over the entire range of composition at T= (298.15, 303.15, 308.15, 313.15 and 318.15) K and at atmospheric pressure. From these experimental data, for both the systems, excess molar volume, VE, versus mole fraction, x1, of N,N-dimethylformamide curves were calculated and found as sigmoid at all temperatures. The partial molar volume of 2- butanol changes almost rapidly but tends to form a hump like in maximum and minimum mole fraction at different temperatures. Excess isentropic compressibility, KSE, values were negative for both the systems over the entire composition range. All the excess parameter values were fitted using the Redlich-Kister polynomial smoothing equation. In addition, the results were analyzed in terms of molecular interactions and structural effects.
Keywords: 2-Butanol, N,N-Dimethylformamide, Excess Molar Volume, Excess Isentropic Compressibility, 2-Pentanol, Molecular interactions
Cite this paper: Aklima Jahan, Md. Ashraful Alam, Md. Rabiul Awual, Shamim Akhtar, Volumetric and Acoustic Properties for Binary Mixtures of N,N-Dimethylformamide with 2-Butanol and 2-Pentanol at Temperatures between 298.15 K and 318.15 K, American Journal of Chemistry, Vol. 9 No. 1, 2019, pp. 1-12. doi: 10.5923/j.chemistry.20190901.01.
![]() | Figure 1. Chemical structures of the compounds used in the experiments |
![]() | (1) |
![]() | Table 2. Experimental densities (ρ), excess molar volume (VE), ultrasonic velocity (u), excess ultrasonic velocity (uE), excess isentropic compressibility values (KSE), acoustical impedance (ZE) of the systems DMF (x1) + 2-BuOH (x2) and + 2-PnOH (x2) for different molar ratios at different temperatures |
![]() | (2) |
and
, u1 and u2 are the volume fraction and ultrasonic velocity of component 1 and component 2, respectively.Excess values of acoustic impedance, (ZE) were calculated by the following equation:![]() | (3) |
![]() | (4) |
|
![]() | (5) |
![]() | (6) |
|
|
![]() | Figure 2. Density (ρ) of DMF(x1) + 2-BuOH(x2) system for different molar ratios at different temperatures |
![]() | Figure 3. Density (ρ) of DMF(x1) + 2-PnOH(x2) system for different molar ratios at different temperatures |
![]() | Figure 4. Excess Molar Volume (VE) of DMF (x1) + 2-BuOH (x2) system for different molar ratios at different temperatures |
![]() | Figure 5. Excess Molar Volume (VE) of DMF (x1) + 2-PnOH (x2) system for different molar ratios at different temperatures |
and
) and excess partial molar volumes (
and
), of DMF, alkanols over the entire composition range were determined using Equation (7) and Equation (8)![]() | (7) |
![]() | (8) |
were obtained.Accordingly, by differentiating Equation (5) for VE with respect to x1 and x2 subsequently, substituting of its value in Equation (7) and Equation (8) lead to the following Equation (9) and Equation (10):![]() | (9) |
![]() | (10) |
![]() | (11) |
![]() | (12) |
of 2-PnOH was slightly risen in the DMF-poor region, but rapidly decreased in the DMF-rich region at lower temperatures. Considering, the significances of
, the falling
of 2-PnOH and also to form the minimum at x2 ≈ 0.85 reveals that in the overall volume expansion, the alkanol contributes slightly but in contraction 2-PnOH contributes quite significantly making the corresponding VE values negative in the DMF-rich region. This is just in accordance to the result that, in the stated region above (x2 = 0.30) the value of (V1 – V1) falls to be negative with minimum near x2 = 0.80 for the system of 2-PnOH + DMF. Likewise, the partial molar volume of 2-BuOH (
) though apparently changes very small in the whole range of concentration, (
– V1) values are all quite large, being positive in the region 0 < x2 < 0.65 and sharp negative above x2 > 0.65. This clearly signifies that, contribution of 2-BuOH towards VE is positive in the former region, while it is negative above x2 > 0.65. However, the magnitudes of VE, whether positive or negative are greater for 2-BuOH + DMF than that for 2-PnOH + DMF.![]() | Figure 6. Partial molar volume of 2-BuOH in 2-BuOH(x2) + DMF(x1) system for different molar ratios at different temperatures |
![]() | Figure 7. Partial molar volume of 2-PnOH in 2-PnOH (x2) + DMF (x1) system for different molar ratios at different temperatures |
![]() | (13) |
![]() | Figure 8. Excess isentropic compressibilities (KsE), for N,N-dimethylformamide (X2) + 2-BuOH (X1) system at different molar ratios at different temperatures |
![]() | Figure 9. Excess isentropic compressibilities, (KsE), for N,N-dimethylformamide (X2) + 2-PnOH (X1) system at different molar ratios at different temperatures |
| [1] | Gupta M., Vibhu I., Shukla J.P.: 2006. Fluid Phase Equilib. 244, 26-32. |
| [2] | Almasi M.: 2014. J. Chem. Thermodynamics 69, 101-106. |
| [3] | Kim K.S., Marsh K.N.: 1988. J. Chem. Eng. Data 33, 288-292. |
| [4] | Nayak J.N., Aralaguppi M.I., Aminabhavi T.M.: 2001. J. Chem. Eng. Data 46, 891-896. |
| [5] | Henni A., Tontiwachwathikul P., Chakma A., Mather A.E.: 1999. J. Chem. Eng. Data 44, 101-107. |
| [6] | Ali A., Nain A.K.: 2001. Indian J. Pure Appl. Phys. 39, 421-427. |
| [7] | Pal A., Bhardwaj R.K.: 2001. J. Indian Chem. Soc. 78, 18-22. |
| [8] | Almasi M.: 2014. Journal of the Taiwan Institute of Chemical Engineers 45, 365-371. |
| [9] | Shuqin L., Xingen H., Ruisen L.: 1999. J. Chem. Eng. Data 44, 353-356. |
| [10] | Krestov G.A.: 1991. Thermodynamics of Solvation; Eills Harwood: England. |
| [11] | Marcus Y.: 1977. Introduction to Liquid-State Chemistry, Wiley-Inter-science: London. |
| [12] | Venkatesu P.: 2010. Fluid Phase Equilib. 298, 173-191. |
| [13] | Karlapudi S., Gardas R.L., Venkateswarlu P., Sivakumar K.: 2013. J. Chem. Thermodynamics 67, 203-209. |
| [14] | Tsierkezos N.G., Palaiologou M.M., Molinou I.E.: 2000. J. Chem. Eng. Data 45, 272-275. |
| [15] | Mrad S., Hichri M., Khattech I., Lafuente C.: 2017. J. Mol. Liq. 231, 168-173. |
| [16] | Schore N.E., Vollhardt K.P.C.: 2007. Organic chemistry: structure and function. New York: W.H. Freeman and Co. |
| [17] | Yang C., Liu Z., Lei H., Ma P.: 2006. J. Chem. Eng. Data 51, 6653-6661. |
| [18] | Iloukhani H., Ghorbani R.: 1998. J. Solution Chem. 27, 1790-1796. |
| [19] | Almasi M.: 2014. J. Chem. Eng. Data 59, 275-281. |
| [20] | Almasi M.: 2014. J. Chem. Thermodynamics 69, 101-106. |
| [21] | Thirumaran S, Mathammal R, Thenmozhi P. Chem. Sci. Trans. 2012;1:674-682. |
| [22] | Thirumaran S., Alli T., Priya D., Selve A.: 2010. E-Journal of Chemistry 7, 217-222. |
| [23] | Kannappan A.N., Thirumaran S., Palani R.: 2009. Journal of Physical Science 20, 97-108. |
| [24] | Tuwaim M.S.A., Alkhaldi K.H.A.E., Al-Jimaz A.S., Mohammad A.A.: 2012. J. Chem. Thermodynamics 48, 39-47. |
| [25] | Thirumaran S., Sabu K.J.: 2012. International Journal of Recent Scientific Research 3, 627- 636. |
| [26] | Almasi M., Iloukhani H.: 2010. J. Chem. Eng. Data 55, 1416-1420. |
| [27] | Almasi M.: 2013. Thermochimica Acta 554, 25-31. |
| [28] | Manukonda G., Ponneri V., Kasibhatta S., Sakamuri S.: 2013. Korean J. Chem. Eng. 30, 1131-1141. |
| [29] | Iloukhani H., Samiey B., Moghaddasi M.A.: 2006. J. Chem. Thermodynamics 38, 190-200. |
| [30] | Iloukhani H., Parsa J.B., Saboury A.A.: 2000. J. Chem. Eng. Data 45, 1016-1018. |
| [31] | Rao K.P., Reddy K.S.: 1985. Thermochimica Acta 91, 321-327. |
| [32] | International Union of Pure and Applied Chemistry.: 1986. Inorganic Chemistry Division, Commission on Atomic Weights and Isotropic Abundances. Pure appl. Chem. 58, 1677-1692. |
| [33] | Baragi J.G., Aralaguppi M.I., Aminabhavi T.M., Kariduraganavar M.Y., Kittur A.S.: 2005. J. Chem. Eng. Data 50, 910-916. |
| [34] | Garcı´a B., Alcalde R., Leal J.M.: 1997. J. Phys. Chem. 101, 7991-7997. |
| [35] | Bernal-García J.M., Guzmán-López A., Cabrales-Torres A., Estrada-Baltazar A., Iglesias-Silva G.A.: 2008. J. Chem. Eng. Data 53, 1024-1027. |
| [36] | Tong-Chun B., Jia Y., Shi-Jun H.: 1999. J. Chem. Eng. Data 44, 491-496. |
| [37] | Akhtar S., Omar Faruk A.N.M., Saleh M.A.: 2001. Phys. Chem. Liq. 39, 383-399. |
| [38] | Sharlin P., Steinby K., Doman´ska U.: 2002. J. Chem. Thermodynamics 34, 927-957. |
| [39] | Riddick J.A., Bunger W.B., Sakano T.K.: 1986. Organic Solvents, Physical Properties and Methods of Purification, 4th ed. John Wiley, Sons: New York. |
| [40] | Kumar H., Kaur M., Gaba R., Kaur K.: 2011. J. Therm. Anal. Calorim. 105, 1071-1080. |
| [41] | Peralta R.D., Infante R., Cortez G., Cisneros A., Wisniak W.: 2005. J. Chem. Eng. Commun. 192, 1684-94. |
| [42] | Awwad A.M., Alsyouri H.A., Jbara K.A.: 2008. J. Chem. Eng. Data 53, 1655-1659. |
| [43] | Ali A., Nain A.K., Lal B., Chand D.: 2004. International Journal of Thermophysics 25, 1835-1847. |
| [44] | Rao K.P., Reddy K. S.: 1985. Thermochimica Acta 91, 321-327. |
| [45] | Lomte S.B., Bawa M.J., Lande M.K., Arbad B.R.: 2009. J. Chem. Eng. Data 54, 127-130. |
| [46] | Nain A.K.: 2007. J. Solution Chem. 36, 497-516. |
| [47] | Giner B., Artigas H., Carrion A., Lafuente C., Royo F.M.: 2003. J. Mol. Liq. 8, 303-311. |
| [48] | TRC Thermodynamic Tables, Non-Hydrocarbons, Thermodynamics Research Center, The Texas A, M University System: College Station, TX. 1993. |
| [49] | Anson A., Garriga R., Martinez S., Perez P., Gracia M.: 2005. J. Chem. Eng. Data 50, 677-682. |
| [50] | Outcalt S.L., Laesecke A., Fortin T.J.: 2010. J. Mol. Liq. 51, 50-59. |
| [51] | Gonzalez B., Dominguez A., Tojo J.: 2006. J. Chem. Thermodynamics 38, 1172-1185. |
| [52] | Babu K.R., Venkateswarlu R., Raman G.K.: 1989. Asian J. Chem. 1, 147-151. |
| [53] | Venkatesulu D., Venkatesu P., Prabhakara M.V.R.: 1997. J. Chem. Eng. Data 42, 1145-1146. |
| [54] | Almasi M., Iloukhani H.: 2010. J. Chem. Eng. Data 55, 3918-3922. |
| [55] | Wen-Lu W., Liang-Tau C., Min S.I.: 1999. J. Chem. Eng. Data 44, 994-997. |
| [56] | TRC Thermodynamic Tables, Non-Hydrocarbons, Thermodynamics Research Center, The Texas A&M University System: College Station, TX. 1994. |
| [57] | Wen-Lu W., Yule-Chen C., Chu-Ping H.: 1999. J. Chem. Eng. Data 44, 998-1001. |
| [58] | Akhtar S., Hossain K.M.S., Saleh M.A.: 2002. Physics and Chemistry of Liquids 40, 435-448. |
| [59] | Redlich O., Kister A.T.: 1948. Ind. Eng. Chem. 44, 345-348. |
| [60] | Maham Y., Teng T.T., Hepler L.G., Mather A.E.: 1994. J. Sol. Chem. 23, 195-205. |