[1] | Alaoui-Sosse A, Gaboriaud F, Vantelon J P, Halim M, Ziyad M (1988) Degradation thermique des schistes bitumineux de Timahdit. Etude sur la formation des principaux gaz de pyrolyse. J ChimPhys 85(1), 103-111. |
[2] | Algeo TJ, Maynard JB (2004) Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chem Geol 206, 289–318. |
[3] | Ambles A, Dupas G, Jacquesy J C, Vitorovic D (1988) Chemical characterization of the kerogen from Moroccan Timahdit black shale by analysis of oxidation products. Org Geochem, Vol. 13, pp. 1031-1038. |
[4] | Anderson RF, Bacon MP, Brewer PG (1983) Removal of 230Th and 231Pa at ocean margins. Earth Planet SciLett. 66, 73–90. |
[5] | Armenteros I, Huerta P (2006) The Role of Clastic Sediment Influx in the Formation of Calcrete and Palustrine Facies: A Response to Paleographic and Climatic Conditions in the Southeastern Tertiary Duero Basin (Northern Spain). Geological Society of America Special Papers, vol. 416, pp. 119–132. |
[6] | Aziz HA, Adlan MN, Ariffin KS (2008) Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr(III)) removal from water in Malaysia: post treatment by high quality limestone. Bioresour Technol. 99(6), 1578–83. |
[7] | Bekri O, Ziyad M (1991) Abstract presented at Black shale Symposium, Lexington, Kentucky, U.S.A. |
[8] | Breit GN, Wanty RB (1991) Vanadium accumulation in carbonaceous rocks: a review of geochemical controls during deposition and diagenesis. ChemGeol, 91 (2), 83–97. |
[9] | Brumsack HJ (2006) The trace metal content of recent organic carbon-rich sediments: implications for Cretaceous black shale formation. Palaeogeogr Palaeoclimatol Palaeoecol, 232, 344–361. |
[10] | Calvert SE, Piper DZ (1984) Geochemistry of ferromanganese nodules from DOMES site a, Northern Equatorial Pacific: multiple diagenetic metal sources in the deep sea. Geochim Cosmochim Acta 48 (10), 1913–1928. |
[11] | Calvert SE, Pedersen TF (1993) Geochemistry of recent oxic and anoxic marine sediments: implications for the geological record. Mar Geol, 113 (1–2), 67–88. |
[12] | Crusius J, Calvert S, Pedersen T, Sage D (1996) Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition. Earth Planet SciLett145, 65–78. |
[13] | Cumberland S, Douglas G, Grice K, Moreau J (2016) Uranium mobility in organic matter-rich sediments: A review of geological and geochemical processes. Earth-Science Reviews, V 159, 160–185. |
[14] | Dean WE, Gardner JV, Piper DZ (1997) Inorganic geochemical indicators of glacial–interglacial changes in productivity and anoxia of the California continental margin. Geochim Cosmochim Acta 61, 4507– 4518. |
[15] | Dean WE, Piper DZ, Peterson LC (1999) Molybdenum accumulation in Cariaco basin sediment over the past 24 ky: a record of water-column anoxia and climate. Geology 27,507– 510. |
[16] | Dill H (1986) Metallogenesis of early Paleozoic graptolite shales from the Graefenthal Horst (northern Bavaria-Federal Republic of Germany). Econ Geol 81 (4), 889–903. |
[17] | Dyni J R (2006) Black shale developments in the United States .Oil Shale, 23(2), 97–98. |
[18] | Einsele G, Wiedmann J (1982) Turonian Black Shales in the Moroccan coastal basins: First upwelling in the Atlantic Ocean. In U.von Rad, K. Hinz, M. Sarnthein and E. Seibold (Eds.), Geology of the Northwest African Continental margin. Springer- Verlag, 396-414. |
[19] | EL Albani A (1995). Les formations du crétacé supérieur du bassin de Tarfaya (Maroc méridional): Sédimentologie et géochimie. Ph. Dthesis, Lille Univ, France. |
[20] | El Batal Y (2014) Le potentiel pétrolier du bassin méso-cénozoïque Tarfaya-Boujdour: Caractérisation sédimentologique, lithostratigraphique, géophysique et géochimique de la roche mère d’âge crétacé supérieur. Ph. Dthesis, Casablanca Univ, Morocoo. |
[21] | Fu XG, Wang J, Zeng YH, Tan FW, Feng XL (2010a) REE geochemistry of marine oil shale from the Changshe Mountain area, northern Tibet, China Int J Coal Geol -81, 191–199. |
[22] | Fu X, Wang J, Zeng Y, Tan F, He J (2010b) Geochemistry and origin of rare earth elements (REEs) in the Shengli River oil shale, northern Tibet, China. Chem Erde-Geochem, 71(1), 21–30. |
[23] | Galindo C, Mougin L, Fakhi S, Nourreddine A, Lamghari A, Hannache H (2007) Distribution of naturally occurring radionuclides (U, Th) in Timahdit black shale (Morocco). Journal of Environmental Radioactivity, 92 (2007), 41-54. |
[24] | Gebhardt H, Zorn I (2008) Cenomanian ostracods of the Tarfaya upwelling region (Morocco) as palaeo environmental indicators. Revue de Micropaléontologie, volume 51, Issue 4, pages 273-286. |
[25] | Gromet LP, Dymek RF, Haskin L A, Korotev RL (1984) The North American shale composite: Its compilation, major and trace element characteristics. Geochimica et cosmochimica Acta Vol. 48. pp. 2469-2482. |
[26] | Hatch JR, Leventhal JS (1992) Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, USA. ChemGeol 99 (1–3), 65–82. |
[27] | Jones B, Manning DAC (1994) Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chem Geol 111(1–4), 111–129. |
[28] | Kasper-Zubillaga J J, Acevedo-Vargas B, Morton-Bermea OM, Ortiz-Zamora G (2008) Rare earth elements of the Altar Desert dune and coastal sands, Northwestern Mexico. ChemErde-Geochem, 68, 45–59. |
[29] | Kholodov VN (2001) The Role of H2S-Contaminated Basins in Sedimentary Ore Formation. Lithology and Mineral Resources. Vol. 37, No. 5, pp. 393–411. |
[30] | Khouya El (2002) Elaboration de nouveaux adsorbants à partir des schistes bitumineux Marocains: Application au traitement des effluents faiblement contaminés par des radioéléments. Ph.D thesis, Casablanca Univ, Morocoo. |
[31] | Kolonica S, Sinninghe Damsté JS, Böttcher ME, Kuypers MMM, WKuhnt, Beckmann B, Scheeder G, Wagner T (2002) Geochemical characterization of cenomanian/Turonian black shales from the Tarfaya basin (SW Morocco). Journal of Petroleum Geology.25, 325–350. |
[32] | Lewan MD, Maynard JB (1982) Factors controlling enrichment of vanadium and nickel in the bitumen of organic sedimentary rocks. Geochim Cosmochim Acta 46 (12), 2547–2560. |
[33] | Luoma SN, Rainbow PS (2008) Metal contamination in aquatic environment. Science and lateral management, Cambridge. 573p. |
[34] | Morford JL, Russell AD, Emerson S (2001) Trace metal evidence for changes in the redox environment associated with the transition from terrigenous clay to diatomaceous sediment, Saanlich Inlet, BC. Mar. Geol. 174, 355– 369. |
[35] | Mu BL (1999) Element geochemistry. Beijing: Tsinghua University Press, p. 206–10 (in Chinese). |
[36] | Neuzil CE (2014) Shale: an overlooked option for US nuclear waste disposal. Bulletin of the Atomic Scientists. |
[37] | Nuttall HE, Guo T M, Schrader S, Thakur DS (1983) Pyrolysis kinetics of several key-world oil shales. In Geochemistry and Chemistry of Oil Shales, pp 270-300.ACS Symposium Series 230. |
[38] | Pailler D, Bard E, Rostek F, Zheng Y, Mortlock R, Van Geen A (2002) Burial of redox-sensitive metals and organic matter in the equatorial Indian Ocean linked to precession. Geochim Cosmochim Acta 66, 849– 865. |
[39] | Qian JL (2006) China’s oil business is going ahead .Oil Shale. 23(4), 295. |
[40] | Rimmer SM, Thompson JA, Goodnight SA, Robl TL (2004) Multiple controls on the preservation of organic matter in Devonian–Mississippian marine black shales: geochemical and petrographic evidence. Palaeogeogr Palaeoclimatol Palaeoecol, 215 (1–2), 125–154. |
[41] | Sari A, Derya K (2012) An approach to provenance, tectonic and redox conditions of Jurassic-cretaceous akkuyuformation, central Taurids, Turkey. Mineral Res. Expl. Bull, 144, 51-74. |
[42] | Saoiabi A, Doukkali A, Hamad M, Zrineh A (2001) Schistes bitumineux de Timahdit (Maroc): composition et propriétés physicochimiques. Chemistry 4, 351–360. |
[43] | Soua M (2010) Productivity and bottom water redox conditions at the Cenomanian–Turonian Oceanic Anoxic Event in the southern Tethyanmargin, Tunisia. Revue Méditerranéenne de l’Environnement, 4, 653–664. |
[44] | Sutherland RA (2000) Bed sediment-associated trace metals in an urban stream, Oahu. Hawaii. Environmental Geology. 39: 611–627. |
[45] | Hansen FD, Hardin EL, Rechard RP, Freeze GA, Sassani DC, Brady PV, Stone CM, Martinez MJ, Holland JF, Dewers T, Gaither KN, Sobolik SR, Cygan RT (2010) Shale Disposal of U.S. High-Level Radioactive Waste. Rapport Sandia National Laboratories. |
[46] | Taylor SR, McLennan SM (1985) The Continental Crust: Its Composition and Evolution. Blackwell, Oxford, pp. 28–29. |
[47] | Tribovillard N, Riboulleau A, Lyons T, Baudin F (2004) Enhanced trapping of molybdenum by sulfurized marine organic matter of marine origin in Mesozoic limestones and shales. ChemGeol213, 385–401. |
[48] | Tribovillard N, Algeo TJ, Lyons TW, Riboulleau A (2006) Trace metal as paleoredox and paleoproductivity proxies: an update. ChemGeol 232, 12–32. |
[49] | Wignall PB (1994) Black shales. Clarendon Press, Oxford. 127 pp. |
[50] | Yarincik KM, Murray RW, Lyons TW, Peterson LC, Haug GH (2000) Oxygenation history of bottom waters in the Cariaco Basin, Venezuela, over the past 578,000 years: results from redox-sensitive metals (Mo, V, Mn, and Fe). Paleoceanography 15, 593– 604. |