[1] | Welch, A. J. (2013). The significance of Wade’s rules. Chem. Commun., 49, 3615-3616. |
[2] | Lipscomb, W. N. (1963). Boron Hydrides. W. A. Benjamin, Inc., New York. |
[3] | Housecroft, C. E., Sharpe, A. G. (2012). Inorganic Chemistry, 4th Edition, Pearson, Harlow, England. |
[4] | Wade, K. (1971). The structural significance of the number of skeletal bonding electron-pairs in carboranes, the higher boranes and borane ions and various transition metal carbonyl cluster compounds. Chem. Commun., 792-793. |
[5] | Mingos, D. M. P. (1984). Polyhedral Skeletal Electron Pair Approach.Acc. Chem. Res., 17(9), 311-319. |
[6] | Mingos, D. M. P. (1972). A General Theory for Cluster and Ring Compounds of the Main Group and Transition Elements. Nature(London), Phys. Sci., 236, 99-102. |
[7] | Jemmis, E. D. (2005). Building relationships between polyhedral boranes and elemental boron. Inorg. Chem. 18, 620-628. |
[8] | Jemmis, E. D., & Prasad, D. L. V. K. (2008). Unknowns in the chemistry of Boron. Current Science, 95(10), 1277-1283. |
[9] | Jemmis, E. D., Jayasree, E. G., & Parameswaran, P. (2006). Hypercarbons in polyhedral structures. Chem. Soc. Rev., 35, 157-168. |
[10] | Hoffmann, R. (1982). Building Bridges between Inorganic and Organic Chemistry. Angew. Chem. Int. Ed. Engl., 21, 711-724. |
[11] | Kiremire, E. M. (2015). Classification of Transition Metal Carbonyl Clusters Using the 14n Rule Derived from Number Theory. Orient. J. Chem., 31(2), 605-618. |
[12] | Kiremire, E.M.R. (2016). Generating Formulas of Transition Metal Carbonyl Clusters of Osmium, Rhodium and Rhenium. Int. J. Chem., 8(1), 126-144. |
[13] | Kiremire, E. M. (2014). Validation and verification of the Expanded Table for Transition Metal Carbonyl and Main Group Element Cluster Series which obey the 18-Electron and the 8-Electron Rules Respectively. Orient. J. Chem., 30(4), 1475-1495. |
[14] | Kiremire, E.M.R. (2016). Classification of Zintl Ion Clusters Using 4n Series Approach. Orient. J. Chem., 32(4), 1731-1738. |
[15] | Kiremire, E.M.R. (2017). The Golden Series and Clusters of Gold-unique Shapes and Bonding. Int. J. Chem., 9(1), 38-57. |
[16] | Kiremire, E.M.R. (2016). Clusters of Gold Containing p-Block Elements. Am. J. Chem., 6(5), 126-144. |
[17] | Kiremire, E.M. (2015). Isolobal Series of Chemical Fragments. Orient. J. Chem., 31(spl. Edn), 59-70. |
[18] | Kiremire, E. M. R. (2017). The Six Silent Laws of Chemical Clusters, 7(2), 21-47. |
[19] | Kiremire, E. M. R. (2016). A Hypothetical Model for the Formation of Transition metal Carbonyl Clusters Based Upon 4n Series Skeletal Numbers. Int. J. Chem., 8(4), 78-110. |
[20] | Kiremire, E.M.R. (2017). Outstanding Applications of Skeletal Numbers to Chemical Clusters. Int. J. Chem., 9(3), 28-48. |
[21] | Kiremire, E. M. R. (2017). Numerical Characterization of Chemical Fragments, Molecules, and Clusters Using Skeletal Numbers and Nuclearity Trees, 7(3), 73-96. |
[22] | Yvon, K. (2004). Encyclopedia of Materials: Transition metal Hydrides. Science and Technology, Elsevier, Ltd, 1-9. |
[23] | Kiremire, E. M. (2014). Numerical sequence of Borane Series. Orient. J. Chem., 30(3), 1055-1060. |
[24] | Felner, T. P., Halet, J-F., Saillard, J-Y. (2007). Molecular Clusters, a bridge to Solid-State Chemistry, Cambridge University Press, UK. |
[25] | Fehlner, T. P. (2006). Reactions of alkynes with metallaboranes: novel reactions lead to new structure types. Pure Appl. Chem., 78(7), 1323-1331. |
[26] | Greenwood, N. N., & Earnshaw, A. (1998). Chemistry of the Elements, 2nd Ed. Butterworth, Oxford. |