[1] | Hantzsch, A., 1882, Ueber die Synthese Pyridinartiger Verbindungen aus. Acetessigather und Aldehydammoniak, Jusfus Liebigs Ann. Chem., 215(1), 1-82. |
[2] | Hutton, R. F., Westheimer, F. H., 1958, N-methyl dihydronicotinamide, Tetrahedron, 3(1), 73-74. |
[3] | Sunkel, C. E., de Casa-Juana, M. F., Santos, L., Gomez, M. M., Villarroya, M., Gonzalez-Morales, M. A., Priego, J. G., Ortega, M. P., 1990, 4-Alkyl-1,4-dihydropyridine derivatives as specific PAF-acether antagonists, J. Med. Chem. 33(12), 3205-3210. |
[4] | Rovnyak, G. C., Kimball, S. D., Beyer, B., Cucinotta, G., DiMarco, J. D., Gougoutas, J., Hedberg, A., Malley, M., McCarthy, J. P., Zhang, R., Moreland, S., 1995, Calcium Entry Blockers and Activators: Conformational and Structural Determinants of Dihydropyrimidine Calcium Channel Modulators, J. Med. Chem., 38(1), 119-129. |
[5] | Archibald, J. L., Bradley, G., Opalko, A., Ward, T. J., White, J. C., Ennis, C., Shapperson, N. B. 1990, Design of an antithrombotic-antihypertensive agent (Wy 27569). Synthesis and evaluation of a series of 2-heteroaryl substituted dihydropyridines, J. Med. Chem., 33(2), 646-652. |
[6] | Boström, S. L., Ljung, B., Mårdh, S., Forsen, S., Thulin, E., 1981, Interaction of the antihypertensive drug felodipine with calmodulin, Nature, 292(1), 777-778. |
[7] | Iwanami, M., Shibanuma, T., Fujimoto, M., Kawai, R., Tamazawa, K., Takenaka, T., Takahashi, K., Murakami, M., 1979, Synthesis of new water-soluble dihydropyridine vasodilators, Chem. Pharm. Bull. 27(6), 1426-1440. |
[8] | Arrowsmith, J. E., Campbell, S. F., Cross, P. E., Stubbs, J. K., Burges, R. A., Gardiner, D. G., Blackburn, K. J., 1986, Long-acting dihydropyridine calcium antagonists. 1. 2-Alkoxymethyl derivatives incorporating basic substituents, J. Med. Chem., 29(9), 1696-1702. |
[9] | Goldmann, S., Stoltefuss, J., 1991, 1,4-Dihydropyridines: Effects of Chirality and Conformation on the Calcium Antagonist and Calcium Agonist Activities, Angew. Chem. Int. Ed. Engl., 30(12), 1559-1578. |
[10] | (a) Handy, S. T., 2003, Greener solvents: room temperature ionic liquids from biorenewable sources” Eur. J. Chem., 9(13), 2938-2944; (b) Leitner, W., 2007, Green Solvents for Processes, Green Chem., 9(1), 923-923; (c) Horváth, I. T., 2008, Solvent from nature” Green Chem., 10(1), 1024-1028; (d) Giovanni, I., Silke, H., Dieter, L., Burkhard, K., 2006, Low melting sugar-urea-salt mixtures as solvents for organic reactions-estimation of polarity and use in catalysis, Green Chem., 8(1), 1051-1055; (e) Clark, J. H., Green chemistry: challenges and opportunities, Green Chem., 1(1), 1-8. |
[11] | (a) Simon, M. O., Li, C., 2012, Green chemistry oriented organic synthesis in water, J. Chem. Soc. Rev., 41(4), 1415-1427; (b) Butler, R. N., Coyne, A. G., 2010, Water: Nature’s Reaction Enforcer-Comparative Effects for Organic Synthesis “In-Water” and “On-Water, Chem. Rev., 110(10), 6302-6337; (c) Chanda, A., Fokin, V. V., Organic synthesis ‘on water’, 2009, Chem. Rev., 109(2), 725-748; (d) Li, C. J., 2007, Reactions of C−H Bonds in Water, Chem. Rev., 107(6), 2546-2562; (e) Li, C. J., 2005, Organic Reactions in Aqueous Media with a Focus on Carbon−Carbon Bond Formations: A Decade Update, Chem. Rev., 105(8), 3095-3166; (f) Li, C. J., 1993, Organic reactions in aqueous media - with a focus on carbon-carbon bond formation, Chem. Rev., 93(6), 2023-2035. |
[12] | (a) Pagliaro, M., Ciriminna, R., Kimura, H., Rossi, M., Pina, C. D., 2007, From glycerol to value-added products, Angew. Chem. Int. Ed., 46(24), 4434-4440; (b) Corma, A., Iborra S., Velty, A., 2007, Chemical Routes for the Transformation of Biomass into Chemicals, Chem. Rev., 107(6), 2411-2502; (c) Armaroli, N., Balzani, V., 2007, The Future of Energy Supply: Challenges and Opportunities, Angew. Chem. Int. Ed., 46(1), 52-66; (d) Jerome, F., Pouilloux, Y., Barrault, J., 2008, Rational design of solid catalysts for the selective use of glycerol as a natural organic building block, ChemSusChem., 1(7), 586-613. |
[13] | (a) Zhou, C. H., Beltramini, J. N., Fan, Y. X., Lu, G. Q., 2008, Chemoselective of Glycerol as a Biorenewable Source to Valuable Commodity Chemicals, Chem. Soc. Rev., 37(3), 527-549; (b) Behr, A., Eilting, J., Irawadi, K., Leschinski, J., Lindner, F., 2008, Improved utilisation of renewable resources: New important derivatives of glycerol, Green Chem., 10(1), 13-30; (c) Bachhav, H. M., Bhagat, S. B., Telvekar, V. N., 2011, Efficient protocol for the synthesis of quinoxaline, benzoxazole and benzimidazole derivatives using glycerol as green solvent, Tetrahedron Lett., 52(43), 5697-5701. |
[14] | (a) Wolfson, A., Litvak, G., Dlugy, C., Shotland, Y., Tavor, D., 2009, Employing crude glycerol from biodiesel production as an alternative green reaction medium, Ind. Crops Prod., 30(1), 78-81; (b) Wolfson, A., Dlugy, C., 2007, Palladium- catalyzed Heck and Suzuki coupling in glycerol, Chem. Pap., 61(3), 228-232; (c) Wolfson, A., Dlugy, C., Shotland, Y., 2007, Glycerol as a green solvent for high product yields and selectivities, Environ. Chem. Lett., 5(2), 67-71. |
[15] | Gu, Y., Barrault, J., Jerome, F., 2008, Glycerol as An Efficient Promoting Medium for Organic Reactions, Adv. Synth. Catal., 350(13), 2007-2012. |
[16] | Karam, A., Villandier, N., Delample, M., Koerkamp, C. K., Douliez, J. P., Granet, R., Krausz, P., Barrault J., Jerome, F., 2008, Rational Design of Sugar-Based “Surfactant Combined Catalyst” for Promoting Glycerol as Solvent, Eur. J. Chem., 14(33), 10196-10200. |
[17] | He, F., Li, P., Gu, Y., Li, G., 2009, Glycerol as a promoting medium for electrophilic activation of aldehydes:catalyst-free synthesis of di(indolyl)methanes, xanthene-1,8(2H)-diones and 1-oxo-hexahydroxanthenes, Green Chem., 11(1), 1767-1773. |
[18] | (a) Radatz, C. S., Silva, R. B., Perin, G., Lenardão, E. J., Jacob, R. G., Alves, D., 2011, Catalyst-free synthesis of benzodiazepines and benzimidazoles using glycerol as recyclable solvent, Tetrahedron Lett., 52(32), 4132-4136; (b) Nascimento, J. E. R., Barcellos, A. M., Sachini, M., Perin, G., Lenardão, E. J., Alves, D., Jacob, R. G., Missau, F., 2011, Catalyst-free synthesis of octahydroacridines using glycerol as recyclable solvent, Tetrahedron Lett., 52(20), 2571-2574. |
[19] | Quiroga, J., Portillo, S., Pérez, A., Gálvez, J., Abonia, R., Insuasty, B., 2006, An efficient synthesis of pyrazolo [3,4-b] pyridine-4-spiroindolinones by a three-component reaction of 5-aminopyrazoles, isatin, and cyclic β-diketones, Tetrahedron Lett., 52(21), 2664-2666. |
[20] | Balamurugan K., Perumal, S., Menéndez, J. C., 2011, New four-component reactions in water: a convergent approach to the metal-free synthesis of spiro[indoline/acenaphthylene-3,4′-pyrazolo[3,4-b]pyridine derivatives, Tetrahedron, 67(18), 3201-3208. |
[21] | Maheswara, M., Siddaiah, V., Damu, G. L., Venkata Rao, C., 2006, An efficient one-pot synthesis of polyhydroquinoline derivatives via Hantzsch condensation using heterogeneous catalyst under solvent-free conditions, Arkivoc, 2006(2), 201-206. |
[22] | Das, B., Ravikanth, B., Ramu, R., VittalRao, B., 2006, An Efficient One-Pot Synthesis of Polyhydroquinolines at Room Temperature Using HY-Zeolite, Chem. Pharma. Bull. 54(7), 1044-1045. |
[23] | Heravi, M. M., Bakhtiri, K., Javadi, N. M., Bamoharram, F. F., Saeedi, M., Oskooi, H. A., 2007, K7[PW11CoO40]-catalyzed one-pot synthesis of polyhydroquinoline derivatives via the Hantzsch three component condensation, J. Mol. Cat. A: Chem., 264(1), 50-52. |
[24] | Tajbakhsh, M., Alaee, E., Alinezhad, H., Khanian, M., Jahani, F., Khaksar, S., Rezaee, P., Tajbakhsh, M., 2012, Titanium Dioxide Nanoparticles Catalyzed Synthesis of Hantzsch Esters and Polyhydroquinoline Derivatives, Chinese J. Cat., 33(9), 1517-1522. |
[25] | Surasani, R., Kalita, D., Rao, A. V. D., Yarbagi, K., Chandrasekhar, K. B., 2012, FeF3 as a novel catalyst for the synthesis of polyhydroquinoline derivatives via unsymmetrical Hantzsch reaction, J. Fluorine Chem., 135(1), 91-96. |
[26] | (a) Balalaie, S., Baoosi, L., Tahoori, F., Rominger, F., Bijanzadeh, H. R., 2013, Synthesis of polysubstituted 1,4-dihydropyridines via three-component reaction, Tetrahedron, 69(2), 738-743; (b) Nasr-Esfahani, M., Hoseini, S. J., Montazerozohori, M., Mehrabi, R., Nasrabadi, H., 2014, Magnetic Fe3O4 nanoparticles: Efficient and recoverable nanocatalyst for the synthesis of polyhydroquinolines and Hantzsch 1,4-dihydropyridines under solvent-free conditions, J. Mol. Cat. A: Chem., 382(1), 99-105; (c) Kar, P., Mishra, B. G., 2013, Silicotungstic acid nanoparticles dispersed in the micropores of Cr-pillared clay as efficient heterogeneous catalyst for the solvent free synthesis of 1,4-dihydropyridines, Chem. Eng. J., 223(3), 647-656; (d) Reddy, T. R., Reddy, G. R., Reddy, L. S., Meda, C. L. T., Parsa, K. V. L., Kumar, K. S., Lingappa, Y., Pal, M., 2013, Montmorillonite K-10 catalyzed green synthesis of 2,6-unsubstituted dihydropyridines as potential inhibitors of PDE4, Eur. J. Med. Chem., 62( |
[27] | (a) Sohal, H. S., Goyal, A., Sharma, R., Khare, R., Kumar, S., 2013, Glycerol mediated, one pot, multicomponent synthesis of dihydropyrano[2,3‐c] pyrazoles, Eur. J. Chem., 4(4), 450‐453; (b) Sohal, H. S., Goyal, A., Sharma, R., Khare, R., Kumar, S., 2013, Facile and Efficient One-Pot Synthesis of Polyhydroquinoline Derivatives via Unsymmeterical Hantzsch Condensation under Solvent-Free Conditions, Curr. Trends Biotec. Chem. Res., 3(1), 12-16; (c) Kumar, S., Goyal, A., Sohal, H. S., Kumar, S., 2013, A Facile, One Pot, Solvent Free Synthesis of 14-Alkyl or Aryl-14H-dibenzo [a,j]xanthenes and 12-Aryl/alkyl-8,9,10,12-tetrahydrobenzo [a]xanthen-11-one Derivatives, Chem. Sci. Trans., 2(4), 1459-1465. |