[1] | Michael JP, de Koning CB, Gravestock D, Hosken GD, Howard AS, Jungman CM, Krause RWM, Parsons AS, Pelly SC, Stambury TV. Enaminones: versatile intermediates for natural product synthesis. Pure Appl Chem, 71, 979–988 1999. |
[2] | Greenhill JV, Chaaban I, Stell PJ. Functionalised enaminones and their use in heterocyclic synthesis. J Heterocycl Chem, 29, 1375–1383, 1992. |
[3] | Kubicki, M.; Cunha S, Rodovalho W, Azevedo NR, Mendonça MO, Lariucci C, Vencato I. The Michael Reaction of Enaminones with N-(p-tolyl)-maleimide: Synthesis and Structural Analysis of Succinimide-enaminones. J Braz Chem Soc, 13, 629–634, 2002. |
[4] | Bassyouni HAR, Codding PW. Hydrogen bonding in three anticonvulsant enaminones. J Mol Struct, 525, 141–152, 2000. |
[5] | Hugo TSB, Mara EFB, Giovanni BR, Daniela AO. Preparation of-enamino carbonylic compounds using microwave radiation/K-10. J Braz Chem Soc. 14, 994–997, 2003. |
[6] | Yuanhong Z, Jingfeng Z, Yongyun Z, Ze L, Liang L, Hongbin Z. Efficient synthesis of β-amino-α,β-unsaturated carbonyl compounds. New J Chem. 29, 769–772, 2005. |
[7] | Zhan-Hui Z, Jin-Yong H. Cobalt(II) chloride-mediated synthesis of-enamino compounds under solvent-free conditions. J Braz Chem Soc. 17, 1447–1451, 2006. |
[8] | Bhatte KD, Tambade PJ, Dhake KP, Bhanage BM. Silver nanoparticles as an efficient, heterogeneous and recyclable catalyst for synthesis of β enaminones. Catal Comm. 11, 1233–1237, 2010. |
[9] | Greenhill JV. Enaminones. Chem Soc Rev. 6, 277–294, 1977. |
[10] | Alberola A, Calvo LA, González-Ortega A, Sañudo Ruíz MC, Yustos P, García S, García-Rodríguez E. Regioselective synthesis of 2(1H)-pyridones from β–aminoenones and malonitrile. Reaction mechanism. J Org Chem. 64, 9493–9498, 1999. |
[11] | Hannick SM, Kishi Y. Improved procedure for the Blaise reaction: A short practical route to the key intermediates of the saxitoxin synthesis. J Org Chem. 48, 3833–3835, 1983. |
[12] | Elaridi J, Thaqi A, Prosser A, Jackson WR, Robinson AJ. An enantioselective synthesis of β2-amino acid derivatives. Tetrahedron: Asymmetry 16, 1309–1319, 2005. |
[13] | Tefane B, Polanc S. A new regio- and chemoselective approach to -keto amides and -enamino carboxamides via 1,3,2-dioxaborinanes. Synlett. 698–702, 2004. |
[14] | Zhao Y, Zhao J, Zhou Y, Lei Z, Li L, Zhang H. Efficient synthesis of β-amino-α,β-unsaturated carbonyl compounds. New J Chem. 29, 769–772, 2005. |
[15] | Khodaei MM, Khosropour R, Kookhazadeh M. A novel enamination of β-dicarbonyl compounds catalyzed by Bi(TFA)3 immobilized on molten TBAB. Can J Chem. 83, 209–212, 2005. |
[16] | Yadav JS, Kumar VN, Rao RS, Priyadarshini AD, Rao PP, Reddy BVS, Nagaiah K. Sc(OTf)3 Catalyzed highly rapid & efficient synthesis of -enamino compounds under solvent-free conditions. J Mol Catal A Chem. 256, 234–237, 2006. |
[17] | Harrad MA, Outtouch R, Ait Ali M, El-Firdoussi L, Karim A, Roucoux A. An efficient Lewis acid catalyst for chemo- and regio-selective enamination of β-dicarbonyl compounds. Catal Comm. 11, 442– 446, 2010. |
[18] | Harrad MA, Boualy B, Oudahmane A, Avignant D, Corrado R. (Z)-4-(2-Naphthylamino)pent-3-en-2-one. Acta Cryst. E67, o1818, 2011. |
[19] | Harrad MA, Boualy B, Ait Ali M, El-Firdoussi L, Corrado R. rac-Ethyl (2Z)-3-{2-[(Z)-4-ethoxy-4-oxobut-2-en-2-ylamino]cyclohexylamino}but-2-enoate. Acta Cryst. E67, o1269-o1270, 2011. |
[20] | Arjona MA, Alario Franco, MA. Kinetic of the thermal d’hydratation of variscite and specific surface area of the solid decomposition products. J Therm Anal Cal. 5, 319-328, 1973. |
[21] | Stojakovic D, Rajic N, Sajic S, Logar NZ, Kaucic V. A kinetic study of the thermal degradation of 3-methylaminopropylamine inside AlPO4-21. J Therm Anal Cal. 87, 339-343, 2007. |
[22] | Lagno F, Demopoulos GP. Synthesis of Hydrated Aluminum Phosphate, AlPO4.1.5H2O (AlPO4−H3), by Controlled Reactive Crystallization in Sulfate Media Ind Eng Chem Res. 44, 8033-8038, 2005. |
[23] | Youssif MI, Mohamed FSh, Aziz MS. Chemical and physical properties of Al1−xFexPO4 alloys Part I. Thermal stability, magnetic properties and related electrical conductivity. Mater Chem Phys. 83, 250-254, 2004. |
[24] | Gutierrez-Mora F, Goretta KC, Singh D, Routbort JL, Sambasivan S, Steiner KA. High-Temperature Mechanical Behavior of Aluminum-Phosphate Based Glass Ceramics (Cerablak). J Eur Ceram Soc.26, 1179-1183, 2006. |
[25] | Britton A, Koch FA, Mavinic D S, Adnan A, Oldham WK, Udala B. Pilot-scale struvite recovery from anaerobic digester supernatant at an enhanced biological phosphorus removal wastewater treatment plant. J Environ Eng Sci. 4, 265-277, 2005. |
[26] | De Farias RF. Chemistry on modified oxide and phosphate surfaces. Interface Science and Technology. First ed. Elsevier, pp 203, 2009. |
[27] | Boonchom B, Youngme S, Srithanratana T, Danvirutai C. Synthesis of AlPO4 and kinetics of thermal decomposition of AlPO4·H2O-H4 precursor. J Therm Anal Cal. 91, 511-516, 2008. |
[28] | Luna D, Bautista FM, Garcia A, Campelo JM, Marinas JM, Romero AA, Llobet A, Romero I, Serrano I. method for the chemical binding of homogenous catalysts to inorganic solid supports, products thus obtained and applications of same. PCTWO 2004/096442, 2004. |
[29] | Bautista FM, Caballero V, Campelo JM, Luna D, Marinas JM, Romero AA, Romero I, Serrano I, Llobet A. Heterogenization of a Ru (II) homogeneous asymmetric hydrogenation catalyst containing BINAP and the N-tridentate bpea ligand, through covalent attachment on amorphous AlPO4 support. Top Catal. 40, 193-205, 2006. |
[30] | Bautista FM, BravoC, Campelo JM, García A, Jurado A, Luna D, Marinas JM, Romero AA. Properties of a glucose oxidase covalently immobilized on amorphous AlPO4 support. J Mol Catal B. 11, 567-577, 2001. |
[31] | Bautista FM, Bravo MC, Campelo JM, García A, Luna D, Marinas JM, Romero AA. Covalent immobilization of acid phosphatase on amorphous AlPO4 support. J Mol Catal B. 6,473-481, 1999. |
[32] | Liu G, Jia M, Zhou Z, Zhang W, Wu T, Jiang D. Synthesis of amorphous mesoporous aluminophosphate materials with high thermal stability using a citric acid route. Chem Commun. 14, 1660-1661, 2004. |
[33] | Braibante MEF, Braibante HS, Rosso GB, Roza JK. α-Bromination of β-Enamino Compounds Using K-10. Synthesis.1927-1935, 2001. |
[34] | Caballero V, Bautista FM, Campelo JM, Luna D, Luque R, Marinas J-M, Romero AA, Romero I, Montserrat R, Serrano I, Hidalgo J-M, Llobet A. Efficient hydrogenation of alkenes using a highly active and reusable immobilised Ru complex on AlPO4. J Mol Catal A Chem. 308, 41-45, 2009. |
[35] | Ranu BC, Hajra A, Jana U. Microwave-Assisted Synthesis of Substituted Pyrroles by a Three-Component Coupling of α,β-Unsaturated Carbonyl Compounds, Amines and Nitroalkanes on the Surface of Silica Gel. Synlett.75–76, 2000. |
[36] | Lidström P, Tierney J, Wathey B, Westman J. Microwave assisted organic synthesis. Tetrahedron. 57, 9225–9283, 2001. |
[37] | Revial G, Lim S, Viossat B, Lemoine P, Tomas A, Duprat AF, Pfau M. Enantioselective Michael Reactions of Chiral Secondary Enaminoesters with 2-Substituted Nitroethylenes. Syntheses of trans,trans-2,4-DisubstitutedPyrrolidine-3-carboxylates. J Org Chem. 65, 4593-4600, 2000. |
[38] | Rokita M, Handke M, Mozgawa W. Spectroscopic studies of polymorphs of AlPO4 and SiO2. J Mol Struct. 450, 213–217, 1998. |
[39] | Muller G, Bodis J, Eder-Mirth G, Kornatowski J, Lercher JA. In situ FT-IR microscopic investigation of metal substituted AlPO4-5 single crystals J Mol Struct. 410–411, 173–178, 1997. |
[40] | Colthup NB, Daly LH, Wiberley SE. Introduction to infrared and Raman spectroscopy. New York: Academic Pressn, p 31, 1964. |
[41] | Zhang ZH, Li TS, Li JJ. Synthesis of enaminones and enamino esters catalysed by ZrOCl2·8H2O. Catal Comm. 8, 1615-1620, 2007. |
[42] | Bautista FM, Campelo JM, Garcia A, Guardeno R, Luna D, Marinas JM. AIPO4-supported nickel catalysts IX. Liquid-phase selective hydrogenation of propargyl alcohols. J Catal. 125, 171-186, 1990. |