American Journal of Chemistry
p-ISSN: 2165-8749 e-ISSN: 2165-8781
2012; 2(2): 18-22
doi: 10.5923/j.chemistry.20120202.04
Yan Zhu 1, Guoxiang Chen 1, Rongchao Jin 2, Yuhan Sun 1
1Low Carbon Conversion Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
2Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, USA
Correspondence to: Yuhan Sun , Low Carbon Conversion Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201203, P. R. China.
Email: |
Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved.
The efficient and stereoselective epoxidation of cis-stilbene and trans-stilbene was achieved at the atomic level using atomically precise Aun(SR)m nanoclusters catalysts in mild conditions, involving thiolate-capped Au25(SR)18, Au38(SR)24, and Au144(SR)60 nanoclusters. These Aun nanoclusters, which are ideally composed of an exact number of gold atoms, have unique atom packing structures and non-metallic electronic properties and show super catalysis comparing to current gold nanoparticles. The atomic-level understanding of mechamism is particularly interesting and the correlation of their structure and properties may provide us a deep insight into the fundamental nanogold catalysis.
Keywords: Aun Nanoclusters, Stereoselective Epoxidation, Atomic-Level Catalysis
Figure 1. The crystal structures of Au25 and Au38 nanoclusters. (for clarity, only Au and S atoms were shown) |
|
Figure 2. The conversions and selectivities of (a) cis-stilbene and (b) trans-stilbene epoxidation on Au25/SiO2 catalyst at different reaction time, respectively |
Scheme 1. Proposed mechanism of the stereoselective epoxidation of stilbene on site-specific catalysis of Au25 nanocluster. Golden: Au atoms of the core; blue: Au atoms of the shell. (Where, when R1 is phene and R2 is H, the reagent is cis-stilbene; when R1 is H and R2 is phene, the reagent is trans-stilbene.) |
[1] | (a) T. Hayashi, K. Tanaka, M. Haruta, J. Catal., 1998, 178, 566; (b) A. Corma, H. Garcia, Chem. Rev., 2002, 102, 3837; (c) G. Grigoropoulou, J. A. Elings, Green Chem., 2003, 5, 1; (d) L. Cumaranatunge, W. N. Delgass, J. Catal., 2005, 232, 38; (e) A.S. K. Hashmi, G. J. Hutchings, Angew. Chem. Int. Et., 2006, 45, 7896; (f) P. Lignier, S. Mangematin, F. Morfin, J. L. Rousset, V. Caps, Catal. Today, 2008, 138, 50; (g) Y. Liu, H. Tsunoyama, T. Akita, T. Tsukuda, Chem. Commun., 2010, 46, 550. |
[2] | M. D. Hughes, Y. Xu, P. McMorn, P. Landon, D. Enache, A. F. Carley, G. A. Attard, G. J. Hutchings, F. King, E. H. Stitt, P. Johnston, K. Griffin, C. J. Kiely, Nature, 2005, 437, 1132. |
[3] | P. Lignier, F. Morfin, S. Mangematin, L. Massin, J. Rpusset, V. Caps, Chem. Commun., 2007, 186. |
[4] | M. Z. Zhu, E. Lanni, N. Garg, M. E. Bier, R. C. Jin, J. Am. Chem. Soc., 2008, 130, 1138. |
[5] | Z. K. Wu, C. Gayathri, R. R. Gil, R. C. Jin, J. Am. Chem. Soc., 2009, 131, 7220. |
[6] | H. F. Qian, Y. Zhu, R. C. Jin, ACS Nano, 2009, 3, 3795. |
[7] | H. F. Qian, R. C. Jin, Nano Lett., 2009, 9, 4083. |
[8] | M. Z. Zhu, C. M. Aikens, F. J. Hollander, G. C. Schatz, R. C. Jin, J. Am. Chem. Soc., 2008, 130, 5883. |
[9] | M. Z. Zhu, C. M. Aikens, M. P. Hendrich, R. Gupta, H. F. Qian, G. C. Schatz, R. C. Jin, J. Am. Chem. Soc., 2009, 131, 2490. |
[10] | H. F. Qian, W. T. Eckenhoff, Y. Zhu, T. Pintauer, R. C. Jin, J. Am. Chem. Soc., 2010, 132, 8280. |
[11] | O. Lopez-Acevedo, J. Akola, R. L. Whtten, H. Gronbeck, H. Hakkinen, J. Phys. Chem. C, 2009, 113, 5035. |
[12] | A. Corma, P. Atienzar, H. Garcia, J. Y. Chane-Ching, Nat. Mater, 2004, 3, 394. |
[13] | A. Abad, A. Corma, H. Garcia, Top. Catal., 2007, 44, 237. |
[14] | G. A. Somorjai, J. Y. Park, Angew. Chem. Int. Ed., 2008, 47, 9212. |