[1] | Andre G., Even S., Putzer H., Burguiere P., Croux C., Danchin A., Martin-Verstraete I., Soutourina O. S-box and T-box riboswitches and antisense RNA control a sulfur metabolic operon of Clostridium acetobutylicum. Nucl. Acids Res., 2008, 36:5955–5969. |
[2] | Babitzke P. and Romeo T. CsrB sRNA family: sequestration of RNA-binding regulatory proteins. Curr. Opin. Microbiol., 2007, 10(2):156-163. |
[3] | Becavin C., Bouchier C., Lechat P., Archambaud C., Creno S., Gouin E., Kuhbacher A., Pucciarelli M.G., Garcia-del Portillo F., Hain T., Portnoy D.A., Chakraborty T., Lecuit M., Pizarro-Cerdà J., Moszer I., Bierne H. Cossart P. Comparison of widely used Listeria monocytogenes strains EGD, 10403S, and EGD-e highlights genomic variations underlying differences in pathogenicity. Mbio, 2014, 5:e00969-14. |
[4] | Bertrand R., Schuster C.F. Post-transcritional regulation of gene expression in bacterial pathogens by toxin-antitoxin systems. Front. Cell. Infect. Microbiol., 2014, 4:6. |
[5] | Bordeau V. and Felden B. Curli synthesis and biofilm formation in enteric bacteria are controlled by a dynamic small RNA module made up of a pseudoknot assisted by an RNA chaperone. Nucl. Acids Res., 2014, 42:4682-4692. |
[6] | Chen X., Taylor D.W., Fowler C.C., Galan J.E., Wang H.W., Wolin S.L. An RNA degradation machine sculpted by Ro autoantigen and noncoding RNA. Cell, 2013, 153:166–177. |
[7] | Coornaert A., Chiaruttini C., Springer M. and Guillier M., Post-transcriptional control of the Escherichia coli PhoQ-PhoP two-component system by multiple sRNAs involves a novel pairing region of GcvB. PLoS Genetics, 2012, 9:e1003156. |
[8] | De Lay N., Schu D.J., Gottesman S. Bacterial small RNA-based negative regulation: Hfq and its accomplices. J. Biol. Chem., 2013, 288:7996-8003. |
[9] | Durand S, Jahn N, Condon C, Brantl S. Type I toxin-antitoxin systems in Bacillus subtilis. RNA Biol. 2012, 9(12):1491-7. |
[10] | Duss O., Michel E., Yulikov M., Schbert M., Jaeschke G., Allain F.H. Structural basis of the non-coding RNA RsmZ acting as a protein sponge. Nature, 2014a, 509:588-592. |
[11] | Duss O., Michel E., Diarra Dit Konté N., Schbert M., Allain F.H. Molecular basis for the wide range of affinity found in Csr/Rsm protein-RNA recognition. Nuc. Acids Res., 2014b, 42:5332-5346. |
[12] | Dussurget O., Bierne H. and Cossart P. The bacterial pathogen Listeria monocytogenes and the interferon family: type I, type II and type III interferons. Front. Cell. Infect. Microbiol., 2014, 4:50. |
[13] | Engelberg-Kulka H., Hazan R., Amitai S. mazEF: a chromosomal toxin-antitoxin module that triggers programmed cell death in bacteria. J Cell Sci., 2005, 118:4327-4332. |
[14] | Felden B., Vandenesch F., Bouloc C., Romby P. The Staphylococcus Aureus RNome and its commitment to virulence. PLoS Pathogen, 2011, 7:e1002006. |
[15] | Goeders N., Van Melderen L. Toxin-antitoxin systems as multilevel interaction systems. Toxins (Basel), 2014, 10:304-324. |
[16] | Fozo E.M. New type I toxin-antitoxin families from “wild” and laboratory strains of E. coli: Ibs-Sib, ShoB-OhsC and Zor-Orz. RNA Biol., 2012, 9:1504-1512. |
[17] | Fozo EM, Hemm MR, Storz G. Small toxic proteins and the antisense RNAs that repress them. Microbiol. Mol. Biol. Rev., 2008, 72(4):579-89. |
[18] | Fozo EM, Makarova KS, Shabalina SA, Yutin N, Koonin EV, Storz G. Abundance of type I toxin-antitoxin systems in bacteria: searches for new candidates and discovery of novel families. Nucl. Acids Res., 2010, 38(11):3743-59. |
[19] | Geissmann T., Chevalier C., Cros M.-J., Boisset S., Fechter P., Noirot C., Schrenzel J., Francois P., Vandenesch F., Gaspin C., Romby P. A search for small noncoding RNAs in Staphylococcus aureus reveals a conserved sequence motif for regulation. Nucl. Acids Res., 2009, 37:7239–7257. |
[20] | Gopel Y., Papenfort K., Reichenbach B., Vogel J., Gorke B. Targeted decay of a regulatory small RNA by an adaptor protein for RNase III and counteraction by an anti-adaptor RNA. Genes Develop., 2013, 27:552-564. |
[21] | Gripenland J., Netterling S., Loh E., Tiensuu T., Toledo-Arana A., Johansson J. RNAs: regulators of bacterial virulence. Nat. Rev. Microbiol. , 2010, 8:857-866. |
[22] | Gruber C.C. and Sperandio V. Posttranscriptional control of microbe-induced rearrangement of host cell actin. MBio, 2014, 5(1):e01025-13. |
[23] | Guillet J.., Hallier M.., Felden B. Emerging functions for the Staphylococcus aureus RNome. PLoS Pathogens, 2013, 9:e1003767. |
[24] | Hain T., Ghai R., Billion A., Kuenne C.T., Steinweg C., Izar B., Mohamed W., Mraheil M.A., Domann E., Schaffrath S., Kärst U., Goesmann A., Oehm S., Pühler A., Merkl R., Vorwerk S., Glaser P., Garrido P., Rusniok C., Buchrieser C., Goebel W., Chakraborty T. Comparative genomics and transcriptomics of lineages I, II, and III strains of Listeria monocytogenes. BMC Genomics, 2012, 13:144. |
[25] | Hoe C.-H., Raabe C.A., Rozhdestvensky T.S., Tang T.-H. Bacterial RNAs: regulation in stress. Int. J. Med. Microbiol., 2013, 303:217-229. |
[26] | Izar B., Mraheil M.A., Hain T. Identification and role of regulatory non-coding RNAs in Listeria monocytogenes. Int. J. Mol. Sci., 2011, 12:5070-5079. |
[27] | Izar B., Mannala G.K., Mraheil M.A., Chakraborty T., Hain T. microRNA Response to Listeria monocytogenes Infection in Epithelial Cells. Int. J. Mol. Sci., 2012, 13(1):1173-1185. |
[28] | Jahn N, Brantl S. One antitoxin--two functions: SR4 controls toxin mRNA decay and translation. Nucleic Acids Res., 2013, 41(21):9870-9880. |
[29] | Kawano M. Divergently overlapping cis-encoded antisense RNA regulating toxin-antitoxin systems from E. coli: hok/sok, ldr/rdl, symE/symR. RNA Biol., 2012, 9(12): 1520-1527. |
[30] | Kawano M, Aravind L, Storz G. An antisense RNA controls synthesis of an SOS-induced toxin evolved from an antitoxin. Mol Microbiol., 2007, 64(3):738-754. |
[31] | Krupovic M., Makarova K.S., Forterre P., Prangishvili D. and Koonin E.V. Casposons: a new superfamily of self-synthesizing DNA transposons at the origin of prokaryotic CRISPR-Cas immunity. BMC Biology, 2014, 12:36. |
[32] | Lasa I., Toledo-Arana A., Dobin A., Villanueva M., Ruiz de los Mozos I., Vergara-Irigaray M., Segura V., Fagegaltier D., Penades J.R., Valle J., Solano C., Gingeras T.R. Genome-wide antisense transcription drives mRNA processing in bacteria. Proc. Natl. Acad. Sci. USA, 2011, 108:20172-20177. |
[33] | Loh E., Dussurget ,O., Gripenland ,J., Vaitkevicius K., Tiensuu T., Mandin P., Johansson J. A trans-acting riboswitch controls expression of the virulence regulator PrfA in Listeria monocytogenes. Cell, 2009, 139:770–779. |
[34] | Makarova KS, Wolf YI, Koonin EV: The basic building blocks and evolution of CRISPR-Cas systems. Biochem. Soc. Trans., 2013, 41:1392-1400. |
[35] | Mandin P., Repoila F., Vergassola M., Geissmann T., Cossart P. Identification of new noncoding RNAs in Listeria monocytogenes and prediction of RNA targets. Nucl. Acids Res., 2007, 35:962-975. |
[36] | Mandin P. and Guillier M. Expanding control in bacteria: interplay between small RNAs and transcriptional regulators to control gene expression. Curr. Opin. Microbiol., 2013, 16, 125–132. |
[37] | Mraheil M.A., Billion A., Kuenne C., Pischimarov J., Kreikemeyer B., Engelmann S., Hartke A., Giard J.-C., Rupnik M., Vorwerk S., Beier M., Retey J., Hartsch T., Jacob A., Cemic F., Hemberger J., Chakraborty T., Hain T. Comparative genome-wide analysis of small RNAs of major Gram-positive pathogens: from identification to application. Microbial Biotechnol., 2010, 3:658-676. |
[38] | Mraheil M.A., Billion A., Mohamed W., Mukherjee K., Kuenne C., Pischimarov J., Krawitz C., Retey J., Hartsch T., Chakraborty T., Hain T. The intracellular sRNA trancriptome of Listeria monocytogenes during growth in macrophages. Nucl. Acids Res., 2011, 39:4235-4248. |
[39] | Mika F. and Hengge R. Small Regulatory RNAs in the control of motility and biofilm formation in E. coli and Salmonella. Int. J. Mol. Sci., 2013, 14:4560-4579. |
[40] | Nechooshtan G., Elgrably-Weiss M., Sheaffer A., Altuvia S. et al. A pH-responsive riboregulator. Genes Dev., 2009, 23: 2650-2662. |
[41] | Papenfort K., Vogel J. Small RNA functions in carbon metabolism and virulence of enteric pathogens. Front. Cell. Infect. Microbiol., 2014, 4:91. |
[42] | Pichon C. and Felden B. Small RNA genes expressed from Staphylococcus aureus genomic and pathogenicity islands with specific expression among pathogenic strains. Proc. Natl. Acad. Sci. USA, 2005, 102:14249–14254. |
[43] | Resch A., Afonyushkin T., Lombo T.B., McDowall K.J., Bläsi U., Kaberdin V.R. Translational activation by the noncoding RNA DsrA involves alternative RNase III processing in the rpoS 5'-leader. RNA, 2008, 14(3):454-459. |
[44] | Romeo T., Vakulskas C.A., Babitzke P. Post- transcriptional regulation on a global scale: form and function of Csr/Rsm systems. Environ. Microbiol. 2013, 15:313-324. |
[45] | Romilly C., Calderari I., Parmentier D., Lioliou E., Romby P., Fechter P. Current knowledge on regulatory RNAs and their machineries in Staphylococcus aureus. RNA Biology, 2012, 9:402-413. |
[46] | Romilly C., Lays C., Tomasini A., Caldelari I., Benito Y., Hammann P., Geissmann T., Boisset S., Romby P., Vandenesch F. A non-coding RNA promotes bacterial persistence and decreases virulence by regulating a regulator in Staphylococcus aureus. PLoS Pathog., 2014, 10:e1003979. |
[47] | Schulte L.N.; Eulalio A.; Mollenkopf H.J.; Reinhardt R.; Vogel J. Analysis of the host microRNA response to Salmonella uncovers the control of major cytokines by the let-7 family. EMBO J., 2011, 30:1977–1989. |
[48] | Sesto N., Touchon M., Andrade J.M., Kondo J., Rocha E.P., Arraiano C.M., Archambaud C., Westhof E., Romby P., Cosssart P. A PNPase dependent CRISPR system in Listeria. PloS Genet., 2014, 10:e1004065. |
[49] | Shioya K., Michaux C., Kuenne C., Hain T., Verneuil N., Budin-Verneuil A., Hartsch T., Hartke A., Giard J.C. Genome-wide identification of small RNAs in the opportunistic pathogen Enterococcus faecalis V583. PLoS One, 2011, 6(9):e23948. |
[50] | Sittka A., Lucchini S., Papenfort K., Sharma C.M., Rolle K., Binnewies T.T., Hinton J.C., Vogel J. Deep sequencing analysis of small noncoding RNA and mRNA targets of the global post-transcriptional regulator, Hfq. PLoS Genet., 2008, 4(8):e1000163. |
[51] | Soutourina O.A., Monot M., Boudry P., Saujet L., Puchon C., Sismeiro O., Semenova E., Severinov K., Le Bouguenec C., Coppée J.Y., Dupuy B., Martin-Verstraete I. Genome-wide identification of regulatory RNAs in the human pathogen Clostridium difficile. PLoS Genet., 2013, 9:e1003493. |
[52] | Storz G., Vogel J., Wasssarman K.M. Regulation by small RNAs in bacteria: expanding frontiers. Mol. Cell, 2011, 43:880-891. |
[53] | Syed M.A.and Lévesque C.M. Chromosomal bacterial type II toxin-antitoxin systems. Can. J. Microbiol., 2012, 58:553-562. |
[54] | Toledo-Arana A., Repoila F. and Cossart P. Small noncoding RNAs controlling pathogenesis. Curr. Op. Microbiol., 2007, 10:182-188. |
[55] | Toledo-Arana A., Dussurget O., Nikitas G., Sesto N., Guet-Revillet H., Balestrino D., Loh E., Gripenland J., Tiensuu T., Vaitkevicius K. et al.: The Listeria transcriptional landscape from saprophytism to virulence. Nature, 2009, 459:950-956. |
[56] | Unterholzner S.J., Poppenberger B., Rozhon W. Toxin-antitoxin systems: Biology, identification, and application. Mob. Genet. Elements, 2013, 3(5):e26219. |
[57] | Urban J. and Vogel J. Two seemingly homologous noncoding RNAs act hierarchically to activate glmS mRNA translation. PLoS Biol., 2008, 6(3):e64. |
[58] | Venkataramanan K.P., Jones S.W., McKormick K.P., Kunjeti S.G., Ralston M.T., Meyers B.C., Papoutsakis E.T. The Clostridium small RNome that responds to stress: the paradigm and importance of toxic metabolite stress in C. acetobutylicum. BMC Genomics, 2013, 14:849. |
[59] | Vogel J. A rough guide to the non-coding RNA world of Salmonella. Mol. Microbiol. 2009, 71:1-11. |
[60] | Wang X., Wood T.K. Toxin-antitoxin systems influence biofilm and persister cell formation and the general stress response. Appl. Environ. Microbiol., 2011, 77:5577-5583. |
[61] | Wang X., Lord S.H., Hong S.H., Peti W., Benedik MM.J., Page R., Wood T.K. Type II toxin/antitoxin MqrS/MqsA controls type V toxin/antitoxin GhoT/GhoS. Environm. Microbiol., 2013, 15:1734-1744. |
[62] | Wen J., Fozo E.M. sRNA Antitoxins: more than one way to repress a toxin. Toxins (Basel), 2014, 6(8):2310-35. |
[63] | Wen J., Won D., Fozo E.M. The ZorO-OrzO type I toxin-antitoxin locus: repression by the OrzO antitoxin. Nucleic Acids Res., 2014, 42(3):1930-46. |
[64] | Westra E.R., Swarts D.C., Staals R.H.J., Jore M.M., Brouns S.J.J., van der Oost J: The CRISPRs, they are a-changin’: how prokaryotes generate adaptive immunity. Annu. Rev. Genet., 2012, 46:311-339. |
[65] | Wurtzel O., Sesto N., Mellin J.R., Karunker I., Edelheit S., Becavin C., Archambaud C., Cossart P., Sorek R: Comparative transcriptomics of pathogenic and non-pathogenic Listeria species. Mol. Syst. Biol., 2012, 8:583. |
[66] | Zorzini V., Buts L., Sleutel M., Garcia-Pino A., Talavera A., Haesaerts S., De Greve H., Cheung A., van Nuland N.A., Loris R. Structural and biophysical characterization of Staphylococcus aureus SaMazF shows conservation of functional dynamics. Nucleic Acids Res., 2014; 42(10):6709-25. |