[1] | Zhang, Z., Dmitrieva, N.I., Park, J.H., Levine, R.L., and Burg, M.B., 2004. High urea and NaCl carbonylate proteins in renal cells in culture and in vivo, and high urea causes 8-oxoguanine lesions in their DNA. Proc. Natl. Acad. Sci. USA., 101:9491-9496. |
[2] | Zhou, X., Ferraris, J.D., Cai, Q., Agarwal, A., and Burg, M.B., 2005. Increased reactive oxygen species contribute to high NaCl-induced activation of the osmoregulatory transcription factor TonEBP/OREBP. Am. J. Physiol. Renal Physiol., 289:F377-385. |
[3] | Mori, T., and Cowley, A.W., 2004. Renal oxidative stress in medullary thick ascending limbs produced by elevated NaCl and glucose. Hypertension, 43:341-346. |
[4] | Dmitrieva, N.I., Cai, Q., and Burg, M.B,. 2004. Cells adapted to high NaCl have many DNA breaks and impaired DNA repair both in cell culture and in vivo. Proc. Natl. Acad. Sci. USA., 101:2317-2322. |
[5] | Dmitrieva, N.I., Burg, M.B., and Ferraris, J.D., 2005. DNA damage and osmotic regulation in the kidney. Am. J. Physiol. Renal Physiol., 289:F2-7. |
[6] | Lamitina, S.T., and Strange, K., 2005. Transcriptional targets of DAF-16 insulin signaling pathway protect C. elegans from extreme hypertonic stress. Am. J. Physiol. Cell Physiol., 288:C467-474. |
[7] | Sizeland, P.C., Chambers, S.T., Lever, M., Bason, L.M., and Robson, R.A., 1995. Short-term response of nonurea organic osmolytes in human kidney to a water load and water deprivation. Am. J. Physiol. Renal Physiol., 268:F227-233. |
[8] | Dellow, W.J., Chambers, S.T., Lever, M., Lunt, H., and Robson, R.A., 1999. Elevated glycine betaine excretion in diabetes mellitus patients is associated with proximal tubular dysfunction and hyperglycemia. Diabetes Res. Clin. Practice, 43:91-99. |
[9] | Wunz, T.M., and Wright, S.H., 1993. Betaine transport in rabbit renal brush-border membrane vesicles. Am. J. Physiol., 264:F948-F955. |
[10] | Bagnasco, S., Balaban, R., Fales, H.M., Yang, Y.M., and Burg, M., 1986. Predominant osmotically active organic solutes in rat and rabbit renal medullas. J. Biol. Chem., 261:5872-5877. |
[11] | Lohr, J.W., Pochal, M.A., and Acara, M., 1991. Osmoregulatory betaine uptake by rat renal medullary slices. J. Am. Soc. Nephrol., 2:879-884. |
[12] | Kempson, S.A., Zhou, Y., and Danbolt, N.C., 2014. The betaine/GABA transporter and betaine: roles in brain, kidney and liver. Front. Physiol., 5. doi:10.3389/fphys.2014.00159. |
[13] | Stoops, E.H., and Caplan, M.J., 2014. Trafficking to the apical and basolateral membranes in polarized epithelial cells. J. Am. Soc. Nephrol., 25:1375-1386. |
[14] | Perego, C., Bulbarelli, A., Longhi, R., Caimi, M., Villa, A., Caplan, M.J., and Pietrini, G., 1997. Sorting of two polytopic proteins, the GABA and betaine transporters, in polarized epithelial cells. J. Biol. Chem., 272:6584-6592. |
[15] | Schweikhard, E.S., Kempson, S.A., Ziegler, C., and Burckhardt, B.C., 2014. Mutation of a single threonine in the cytoplasmic NH2 terminus disrupts trafficking of renal betaine-GABA transporter 1 during hypertonic stress. Am. J. Physiol. Renal Physiol., 307:F107-F115. |
[16] | Cowley, A.W., Jr., Mori, T., Mattson, D., and Zou, A.-P., 2003. Role of renal NO production in the regulation of medullary blood flow. Am. J. Physiol. Regul. Integr. Comp. Physiol., 284:R1355-1369. |
[17] | Evans, R.G., and Fitzgerald, S.M., 2005. Nitric oxide and superoxide in the renal medulla: a delicate balancing act. Curr. Opin. Nephrol. Hypertens., 14:9-15. |
[18] | Ortiz, P.A., and Garvin, J.L., 2002. Role of nitric oxide in the regulation of nephron transport. Am. J. Physiol. Renal Physiol., 282:F777-784. |
[19] | Cabral, P.D., and Garvin, J.L., 2014. TRPV4 activation mediates flow-induced nitric oxide production in the rat thick ascending limb. Am. J. Physiol. Renal Physiol., 307:F666-F672. |
[20] | Perri, R.E., Langer, D.A., Chatterjee, S., Gibbons, S.J., Gadgil, J., Cao, S., Farrugia, G., and Shah, V.H., 2006. Defects in cGMP-PKG pathway contribute to impaired NO dependent responses in hepatic stellate cells upon activation. Am. J. Physiol. Gastrointest. Liver. Physiol., 290:G535-542. |
[21] | Kempson, S., Thompson, N., Pezzuto, L., and Bohlen, H.G., 2007. Nitric oxide production by mouse renal tubules can be increased by a sodium-dependent mechanism. Nitric Oxide, 17:33-43. |
[22] | Wu, Z., Nybom, P., Sundqvist, T., and Magnusson, K.-E., 1998. Endogenous nitric oxide in MDCK-I cells modulates the Vibrio choleraehaemagglutinin / protease (HA/P)- mediated cytotoxicity. Microb. Pathog., 24:321-326. |
[23] | Neuhofer, W., Fraek, M.-L., and Beck, F.-X., 2009. Nitric oxide decreases expression of osmoprotective genes via direct inhibition of TonEBP transcriptional activity. Pflügers. Archiv. Eur. J. Physiol., 457:831-843. |
[24] | Kempson, S.A., Parikh, V., Xi, L., Chu, S., and Montrose, M., 2003. Subcellular distribution of the renal betaine transporter during hypertonic stress. Am. J. Physiol. Cell Physiol., 285:C1091-C1100. |
[25] | Kovacs, G., Komlosi, P., Fuson, A., Peti-Peterdi, J., Rosivall, L., and Bell, P.D. 2003., Neuronal Nitric Oxide Synthase: Its Role and Regulation in Macula Densa Cells. J Am Soc Nephrol 14:2475-2483. |
[26] | Chu, S., and Bohlen, H.G., 2004. High concentration of glucose inhibits glomerular endothelial eNOS through a PKC mechanism. Am. J. Physio. Renal Physiol., 287:F384-F392. |
[27] | Kempson, S.A., Edwards, J.M., and Sturek, M., 2006. Inhibition of the renal betaine transporter by calcium ions. Am. J. Physiol. Renal Physiol., 291:F305-F313. |
[28] | Kempson, S.A., 1998. Differential activation of system A and betaine/GABA transport in MDCK cell membranes by hypertonic stress. Biochim. Biophys. Acta, 1372:117-123. |
[29] | Hatanaka, T., Hatanaka, Y., and Setou, M., 2006. Regulation of amino acid transporter ATA2 by ubiquitin ligase Nedd4-2. J. Biol. Chem., 281:35922-35930. |
[30] | Blaine, J., Lanzano, L., Giral, H., Caldas, Y., Levi, M., Gratton, E., Moldovan, R., and Lei, T., 2011. Dynamic Imaging of the Sodium Phosphate Cotransporters. Adv. Chronic Kidney Dis., 18:145-150. |
[31] | Blaine, J., Okamura, K., Giral, H., Breusegem, S., Caldas, Y., Millard, A., Barry, N., and Levi, M., 2009. PTH-induced internalization of apical membrane NaPi2a: role of actin and myosin VI. Am. J. Physiol. Cell Physiol., 297:C1339-C1346. |
[32] | Dobrinskikh, E., Okamura, K., Kopp, J.B., Doctor, R.B., and Blaine, J., 2014. Human podocytes perform polarized, caveolae-dependent albumin endocytosis. Am. J. Physiol. Renal Physiol., 306:F941-F951. |
[33] | Moss, N.G., Kopple, T.E., and Arendshorst, W.J., 2014. Renal vasoconstriction by vasopressin V1a receptors is modulated by nitric oxide, prostanoids, and superoxide but not the ADP ribosyl cyclase CD38. Am. J. Physiol. Renal Physiol., 306:F1143-F1154. |
[34] | Hong, N.J., and Garvin, J.L., 2009. Nitric oxide reduces flow-induced superoxide production via cGMP-dependent protein kinase in thick ascending limbs. Am. J. Physiol. Renal Physiol., 296:F1061-F1066. |