[1] | G. Filliatreau, Dynamique des microtubules et transport du cytosquelette dans les axones peripheriques (Doctoral dissertation, Paris 6, 1991). |
[2] | B. Franco, Régulation de la stabilité du cytosquelette microtubulaire: conséquences sur la croissance de la jonction neuromusculaire chez la Drosophile (Doctoral dissertation, 2007). |
[3] | A. Ganguly, H. Yang, R. Sharma, K. D. Patel, & F. Cabral, The role of microtubules and their dynamics in cell migration. Journal of Biological Chemistry, 287(52): (2012). |
[4] | S. Forth & T. M. Kapoor, The mechanics of microtubule networks in cell division. Journal of Cell Biology, 216(6): (2017). |
[5] | M. V. Satarić, L. Budinski-Petković, & I. Lončarević, Microtubules as active tracks for bi-directional cellular traffic of motor proteins. International Journal of Modern Physics B, (2007) 21(32). |
[6] | L. A. AMOS, & A. Klug, Arrangement of subunits in flagellar microtubules. Journal of cell science, 14(3): (1974). |
[7] | D. J. Bicout, Green’s functions and first passage time distributions for dynamic instability of microtubules. Physical Review E, 56(6): (1997). |
[8] | N. E. Mavromatos, A. Mershin, & D. V. Nanopoulos, QED-Cavity model of microtubules implies dissipationless energy transfer and biological quantum teleportation. International Journal of Modern Physics B, 16(24): (2002). |
[9] | T. Antal, P. L. Krapivsky, S. Redner, M. Mailman, & B. Chakraborty, Dynamics of an idealized model of microtubule growth and catastrophe. Physical Review E, 76(4): (2007). |
[10] | L. Bonnemay, Utilisation de nanoparticules magnétiques pour perturber la localisation spatiotemporelle de protéines de signalisation (Doctoral dissertation, Paris 6, 2014). |
[11] | C. Ying, Q. Xi-Jun, & L. Ru-Xin, Pseudo-spin model for the cytoskeletal microtubule surface. Chinese Physics Letters, 21(11): (2004). |
[12] | X. Li, & A. B. Kolomeisky, Theoretical analysis of microtubules dynamics using a physical–chemical description of hydrolysis. The Journal of Physical Chemistry B, 117(31), 9217-9223: (2013). |
[13] | F. Schwietert, & J. Kierfeld, Bistability and oscillations in cooperative microtubule and kinetochore dynamics in the mitotic spindle. New Journal of Physics, 22(5), 053008: (2020). |
[14] | S. Swaminathan, F. Ziebert, I. S. Aranson, & D. Karpeev, Motor-mediated microtubule self-organization in dilute and semi-dilute filament solutions. Mathematical Modelling of Natural Phenomena, 6(1), 119-137: (2011). |
[15] | J. Pokorný, Excitation of vibrations in microtubules in living cells. Bioelectrochemistry, 63(1-2): (2004). |
[16] | B. Trpišová, & J. A. Brown, Ordering of dipoles in different types of microtubule lattice. International Journal of Modern Physics B, 12(05): (1998). |
[17] | M. Ragheb, Modélisation des propriétés des matériaux ferroélectriques displacifs monocristallins (Doctoral dissertation, 2013). |
[18] | R. D. Campbell, A computer model of the ferroelectric properties of microtubules. International Journal of Modern Physics B, 18 (02): (2004). |
[19] | A. Singh, & S. Singh, Effect of pressure on spontaneous polarization and tilt angle in ferroelectric liquid crystal DOBAMBC. International Journal of Modern Physics B, 23(08): (2009). |
[20] | Velenik, Y. Le modèle d'Ising (2009). |
[21] | G. G. Emch, Algebraic methods in statistical mechanics and quantum field theory. Courier Corporation (2009). |
[22] | R. Blinc, Soft modes in ferroelectrics and antiferroelectrics. North-Holland (1974). |
[23] | Z.Wang, & M. J. Grimson, Pseudo-Spin Based Dynamical Model for Polarisation Switching in Ferroelectrics. arXiv preprint arXiv: (2015). |
[24] | Wang, Z., & Grimson, M. J. Spin dynamics in driven composite multiferroics. Journal of Applied Physics, 118(12), 124109: (2015). |
[25] | S. H. Kim, Size-driven ferroelectrics in 2D pseudo-spin Ising model. Ferroelectrics, 535(1) (2018). |
[26] | A. A. Diouf, B.Lo, A. N.Dione, C. B.Ndao, & A. C. Béye, How to Model an Ising Ferroelectric System: Case of the Investigation of the Dielectrics Properties of a Nano-Octahedral Ferroelectric System. Communications, 5(5): (2017). |
[27] | J. A. Tuszynski, & R. Gordon, A mean field Ising model for cortical rotation in amphibian one-cell stage embryos. BioSystems, 109(3): (2012). |
[28] | J. A. Brown, & J. A. Tuszyński, Dipole interactions in axonal microtubules as a mechanism of signal propagation. Physical Review E, 56(5): (1997). |
[29] | P. M. Vassilev, R. T. Dronzine, M. P. Vassileva, & G. A. Georgiev, Parallel arrays of microtubules formed in electric and magnetic fields. Bioscience reports, 2(12): (1982). |
[30] | J. A. Brown, & J. A. Tuszynski, A review of the ferroelectric model of microtubules. Ferroelectrics, 220(1), 141-155: (1999). |
[31] | J. Pokorny, Conditions for coherent vibrations in the cytoskeleton. Bioelectrochem. Bioenerg. 48, 267–271: (1999). |
[32] | J- Cifra, M., D. Havelka, & M. A. Deriu, Electric field generated by longitudinal axial microtubule vibration modes with high spatial resolution microtubule model. In Journal of Physics: Conference Series (Vol. 329, No. 1, p. 012013). IOP Publishing, (2011). |
[33] | I.B. Santelices, D.E. Friesen, C. Bell, et al. Response to Alternating Electric Fields of Tubulin Dimers and Microtubule Ensembles in Electrolytic Solutions. Sci Rep 7, 9594 (2017). |
[34] | J. A. Tuszyński, J. A. Brown, & P. Hawrylak, Dielectric polarization, electrical conduction, information processing and quantum computation in microtubules. Are they plausible?. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 356(1743): (1998). |
[35] | Z. Wang, & M. J. Grimson, Pseudo-Spin Based Dynamical Model for Polarisation Switching in Ferroelectrics. arXiv preprint arXiv: 1506.08500: (2015). |
[36] | X. S. Wang, C. L. Wang, W. L. Zhong, & X. Y. Xue, Polarization and dielectric properties of temperature-graded ferroelectric structure from the transverse Ising model. Materials Science and Engineering: B, 99(1-3), 576-579: (2003). |
[37] | H.Jang, & M. J. Grimson, Thin ferromagnetic films with competing surfaces: A Monte Carlo study of the classical Heisenberg model. Physical Review B, 55(18): (1997). |
[38] | F. Krzakala, Mean Field theory of Disordered Systems: From spin models to glasses and interdisciplinary applications. |
[39] | M. C. Ekosso, A. J. Fotue, S. C. Kenfack, H. Fotsin, & L. C. Fai, Effects of temperature variations on the dynamics of microtubules. Modern Physics Letters B, 1950433: (2019) |