[1] | G. Filliatreau, Dynamique des microtubules et transport du cytosquelette dans les axones peripheriques (Doctoral dissertation, Paris 6, 1991). |
[2] | B. Franco, Régulation de la stabilité du cytosquelette microtubulaire: conséquences sur la croissance de la jonction neuromusculaire chez la Drosophile (Doctoral dissertation, 2007). |
[3] | A. Ganguly, H. Yang, R. Sharma, K. D. Patel, & F. Cabral, The role of microtubules and their dynamics in cell migration. Journal of Biological Chemistry, 287(52): (2012). |
[4] | S. Forth & T. M. Kapoor, The mechanics of microtubule networks in cell division. Journal of Cell Biology, 216(6): (2017). |
[5] | Z. Wang, C. Zhang, & G. Wang, Molecular motors control length of antiparallel microtubule overlaps. Modern Physics Letters B, 26(04): (2012). |
[6] | A. T. Rüdiger, P. Mayrhofer, Y. Ma-Lauer, G. Pohlentz, J. Müthing, A. von Brunn, & C. Schwegmann-Weßels, Tubulins interact with porcine and human S proteins of the genus Alphacoronavirus and support successful assembly and release of infectious viral particles. Virology, 497, 185-197 (2016). |
[7] | F. Roohvand, P. Maillard, J. P. Lavergne, S. Boulant, M. Walic, U. Andréo,... & A. Budkowska, Initiation of hepatitis C virus infection requires the dynamic microtubule network role of the viral nucleocapsid protein. Journal of Biological Chemistry, 284(20): 13778-13791. (2009). |
[8] | M. C. Hagemeijer, M. H. Verheije, M. Ulasli, I. A. Shaltiël, L. A. de Vries, F. Reggiori,... & C. A. de Haan, Dynamics of coronavirus replication-transcription complexes. Journal of virology, 84(4): 2134-2149. (2010). |
[9] | L. A. AMOS, & A. Klug, Arrangement of subunits in flagellar microtubules. Journal of cell science, 14(3): 523-549. (1974). |
[10] | D. J. Bicout, Green’s functions and first passage time distributions for dynamic instability of microtubules. Physical Review E, 56(6): 6656. (1997). |
[11] | T. Antal, P. L. Krapivsky, S. Redner, M. Mailman, & B. Chakraborty, Dynamics of an idealized model of microtubule growth and catastrophe. Physical Review E, 76(4): 041907. (2007). |
[12] | Bonnemay, L. Utilisation de nanoparticules magnétiques pour perturber la localisation spatiotemporelle de protéines de signalisation (Doctoral dissertation, Paris 6, 2014). |
[13] | R. Stracke, K. J. Böhm, L. Wollweber, J. A. Tuszynski, & E. Unger, Analysis of the migration behaviour of single microtubules in electric fields. Biochemical and biophysical research communications, 293(1): 602-609. (2002). |
[14] | J. Pokorný, Excitation of vibrations in microtubules in living cells. Bioelectrochemistry, 63(1-2), 321-326. (2004). |
[15] | C. Ying, Q. Xi-Jun, & L. Ru-Xin, Pseudo-spin model for the cytoskeletal microtubule surface. Chinese Physics Letters, 21(11): 2313. (2004). |
[16] | E. Nogales, S. G. Wolf, & K. H. Downing, Structure of the ab tubulin dimer by electron crystallography (Correction). Nature, 393(6681): 191. (1998). |
[17] | Y. L. Li, L. E. Cross, & L. Q. Chen, A phenomenological thermodynamic potential for Ba Ti O 3 single crystals. Journal of Applied Physics, 98(6): 064101. (2005). |
[18] | M. Ragheb, Modélisation des propriétés des matériaux ferroélectriques displacifs monocristallins (Doctoral dissertation, 2013). |
[19] | J. DIONOT, ÉCOLE DOCTORALE 564 PHYSIQUE EN ÎLE-DE-FRANCE (Doctoral dissertation, UNIVERSITÉ PARIS-SUD). |
[20] | A. J. Bell, Phenomenologically derived electric field-temperature phase diagrams and piezoelectric coefficients for single crystal barium titanate under fields along different axes. Journal of Applied Physics, 89(7): 3907-3914. (2001). |
[21] | J. A. Brown, & J. A. Tuszynski, A review of the ferroelectric model of microtubules. Ferroelectrics, 220(1): 141-155. (1999). |
[22] | R. D. King-Smith, & D. Vanderbilt, Theory of polarization of crystalline solids. Physical Review B, 47(3): 1651. (1993). |
[23] | R. Resta, Macroscopic polarization in crystalline dielectrics: the geometric phase approach. Reviews of modern physics, 66(3): 899. (1994). |
[24] | P. M. Vassilev, R. T. Dronzine, M. P. Vassileva, & G. A. Georgiev, Parallel arrays of microtubules formed in electric and magnetic fields. Bioscience reports, 2(12): 1025-1029. (1982). |
[25] | J. A. Brown, & J. A. Tuszynski, A review of the ferroelectric model of microtubules. Ferroelectrics, 220(1): 141-155. (1999). |
[26] | J. Pokorny, Conditions for coherent vibrations in the cytoskeleton. Bioelectrochem. Bioenerg. 48, 267–271. (1999). |
[27] | Y. Chen, X. J. Qiu, & X. L. Dong, Pseudo-spin model for the microtubule wall in external field. Biosystems, 82(2): 127-136. (2005). |
[28] | J- Cifra, M., D. Havelka, & M. A. Deriu, Electric field generated by longitudinal axial microtubule vibration modes with high spatial resolution microtubule model. In Journal of Physics: Conference Series (Vol. 329, No. 1, p. 012013). IOP Publishing, (2011). |
[29] | Z. Wang, Composite Multiferroics and Magnetoelectric Skyrmions (Doctoral dissertation, ResearchSpace@ Auckland, 2017). |
[30] | M. A. Neto, R. A. Dos Anjos, & J. R. De Sousa, Anisotropic Ising model in a magnetic field: Effective-field theory analysis. Physical Review B, 73(21): 214439. (2006). |
[31] | C. L. Wang, S. R. P. Smith, & D. R. Tilley, Ferroelectric thin films described by an Ising model in a transverse field. Journal of Physics: Condensed Matter, 6(45): 9633. (1994). |
[32] | Z. Wang, & M. J. Grimson, Pseudo-Spin Based Dynamical Model for Polarisation Switching in Ferroelectrics. arXiv preprint arXiv: 1506.08500. (2015). |
[33] | X. S. Wang, C. L. Wang, W. L. Zhong, & X. Y. Xue, Polarization and dielectric properties of temperature-graded ferroelectric structure from the transverse Ising model. Materials Science and Engineering: B, 99(1-3), 576-579. (2003). |
[34] | E. Kantar, Bilayer Ising system designed with half-integer spins: Magnetic hysteresis, compensation behaviors and phase diagrams. Modern Physics Letters B, 30(23), 1650295. (2016). |
[35] | F. G. Kuang, X. Y. Kuang, & B. B. Zheng, Pyroelectric and Phase Transition Properties of a Finite Alternating Ferroelectric Superlattice with Three Surface Layers. Modern Physics Letters B, 25(15), 1321-1333. (2011). |
[36] | M. C. Ekosso, A. J. Fotue, S. C. Kenfack, H. Fotsin, & L. C. Fai, Effects of temperature variations on the dynamics of microtubules. Modern Physics Letters B, 33(34), 1950433. (2019). |
[37] | Y. Benhouria, I. Essaoudi, A. Ainane, R. Ahuja, & F. Dujardin, Dielectric Properties and Hysteresis Loops of a Ferroelectric Nanoparticle System Described by the Transverse Ising Model. Journal of Superconductivity and Novel Magnetism, 27(9), 2153-2162. (2014). |