[1] | Selkoe DJ: Cell biology of protein misfolding: the examples of Alzheimer’s and Parkinson’s diseases. Nat Cell Biol 6: 1054-1061. (2004). |
[2] | Mucke L, Selkoe DJ: Neurotoxicity of amyloid β- protein: synaptic and network dysfunction. Cold Spring Harb Perspect Med 2: a006338. (2012). |
[3] | Matz JM, Blake MJ, Tatelman HM, Lavoi KP, Holbrook NJ: “Characterization and regulation of cold- induced heat shock protein expression in mouse brown adipose tissue”. The American Journal of Physiology. 269 (1 Pt 2): R38-47, PMID7631901 (1995). |
[4] | Cao Y, Ohwatari N, Matsumoto T, Kosaka M, Ohtsuru A, Yamashita S: “TGF-betal mediates 70-kDa heat shock protein induction due to ultraviolet irradiation in human skin fibroblasts”. Pflugers Archiv. 438 (3): 239-44, PMID10398851 (1999). |
[5] | Laplante AF, Moulin V, Auger FA, Landry J, Li H, Morrow G, Tanguay RM, Germain L: “Expression of heat shock proteins in mouse skin during wound healing”. The Journal of Histochemistry and Cytochemistry. 46 (11): 1291-301. (1998). |
[6] | Schlesinger MJ: “Heat shock proteins”. The Journal of Biological Chemistry. 265 (21): 1211-4, PMID2197269 (1990). |
[7] | Benjamin IJ, Mc Millan DR: “Stress (heat shock) proteins: molecular chaperones in cardiovascular biology and disease”. Circulation Research. 83 (2): 117-32, PMID9686751 (1998). |
[8] | Nishikawa M, Takemoto S, Takakura Y: “Heat shock protein derivatives for delivery of antigens to antigen presenting cells”. International Journal of Pharmaceutics. 354 (1-2): 23-7, PMID17480980 (2008). |
[9] | Shaun Mc Nulty, Camilo A Colaco, Lucy E Blandford, Christopher R Bailey, Selene Baschieri, and Stephen Todryk: Heat-shock proteins as dendritic cell-targeting vaccines – getting warmer, Immunology, 139 (4), PMC3719058 (2013). |
[10] | Bolhassani A, Rafati S.: Mini-chaperones: Potential immuno-stimulators in vaccine design. Hum Vaccin Immunother. 3; 9: 153-61. (2013). |
[11] | Ellis RJ, Molecular chaperones: assisting assembly in addition to folding. Trends Biochem Sci 31: 395-401. (2006). |
[12] | Bagatell R, Whitesell L: Altered Hsp 90 function in cancer: a unique therapeutic opportunity. Mol Cancer Ther 3: 1021-1030. (2004). |
[13] | Liu YH, Han YL, Song J, Wang Y, Jing YY, et al: Heat shock protein 104 inhibited the fibrillization of prion peptide 106-126 and disassembled prion peptide 106-126 fibrils in vitro. Int J Biochem Cell biol 43:768-774. (2011). |
[14] | Dickey C, Kraft C, Jinwal U, Koren J, Johnson A, et al: Aging analysis reveals slowed tau turnover and enhanced stress response in a mouse model of tauopathy. Am J Pathol 174: 228-238. (2009). |
[15] | Jana NR, Tanaka M, Wang Gh, Nukina N: Polyglutamine length-dependent interaction of Hsp 40 and Hsp 70 family chaperones with trucated N-terminal huntingtin: their role in suppression of aggregation and cellular toxicity. Hum Mol Genet 9: 2009-2018. (2000). |
[16] | Bagatell R, Whitesell L: Altered Hsp 90 function in cancer: a unique therapeutic opportunity. Mol Cancer Ther 3: 1021-1030. (2004). |
[17] | Aggarwal BB, Sundaram C, Malani N, Ichikawa H: Curcumin: the Indian solid gold. AdvExp Med Biol 595: 1-75. (2007). |
[18] | Frautschy SA, Hu W, Kim P, Miller SA, Chu T, et al: Phenolic anti-inflammatory antioxidant reversal of Abeta-induced cognitive deficits and neuropathology. Neurobiol Aging 22: 993-1005. (2001). |
[19] | Maiti Panchanan and Mnna Jayeeta: Activation of Heat Shock Proteins by Nanocurcumin to Prevent Neurodegenerative Diseases. Brain Disorders & Therapy, 1-8. (2014). |
[20] | Garcia – Alloza M, Borrelli LA, Rozkalne A, Hyman BT, Bacskai BJ: Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model. Journal of Neurochemistry 102: 1095-1097. (2007). |
[21] | Shytle RD, Bickford PC, Rezai-zadeh K, Hou L, Zeng J, et al: Optimized turmeric extracts have potent anti-amyloidogenic effects. Curr Alzheimer Res 6: 564-571. (2009). |
[22] | Tutar L, Tutar Y: Heat shock proteins; an overview. Curr Pharm Biotechnol 11: 216-222. (2010). |
[23] | Bala K, Tripathy BC, Sharma D: Neuroprotective and anti-ageing effects of curcumin in aged rat brain regions. Biogerontology 7: 81-89. (2006). |
[24] | Jinwal UK, O’Leary JC 3rd, Borysov SI, Jones JR, Li Q, et al: HSC 70 rapidly engages tau after microtuble destabilization. J BiolChem 285; 16798-16805. (2010). |
[25] | Tei M, Uchida K, Mutsuga M, Chambers JK, Nakayama H: The binding of curcumin proteins to various types of canine amyloid. The J Vet Med Sci / The Japanese society of Vet, Sci. 74: 51-57. (2012). |
[26] | Mythri RB, Bharath MM. Curcumin: a potential neuroprotective agent in Parkinson’s disease. Curr Pharm Des 18: 91-99. (2012). |
[27] | Caughey B, Raymond LD, Raymond GJ, Maxson L, Silveira J, et al: Inhibition of protease-resistant prion protein accumulation in vitro by curcumin. J Virol 77: 5499-5502. (2003). |
[28] | The Huntington’s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease collaborative Research group cell 72 (6): 971-83, PMID8458085 (1993). (i) Choi YB, Kadakkuzha BM, Liu XA, Akhmedov K, Kandel ER, Puthanveettil SV: Huntingtin is critical both pre-and postsynaptically for long-term learning-related synaptic plasticity in Aplysia. PLOS ONE. 9 (7): e103004, PMC 410836, PMID 25054562. Doi: 10.1371. (2014). (ii) Walker FO. Huntinggton’s diseease. Lancet: 369, 218-28, PMID17240289 (2007). |
[29] | Nasir J, Floresco SB, O’Kusky JR, Diewert VM, Richman JM, Zeisler J, Borowski A, Marth JD, Phillips AG, Hayden MR: Targeted disruption of the Huntington’s disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell 81 (5), 811-23, PMID7774020 (1995). (i) Wikipedia, Huntington’s Outreach Project for Education, Stanford 26 March, 2016. |
[30] | Majumder BG, De UC. Role of protein vibration in learning and memory- A Mathematical Approach. International journal of Biophysics, 3 (1): 33-37. (2013). |
[31] | Lee YH, Kim DH, Kim YS, Kim TJ. Prevention of oxidative stress-induced apoptosis of C2C12 myoblasts by a Cichoriumintybus root extract. Biosci Biotechnol Biochem 77: 375-377. (2013). |
[32] | Davenport J, Manjarrez JR, Peterson L, Krumm B, Blagg BS, et al. Gambogic acid, a natural product inhibitor of Hsp 90. J Nat Prod 74: 1085-1092. (2011). |
[33] | Grogan Pt, Sleder KD, Samadi AK, Zhang H, Timmermann BN, et al. Cytotoxicity of withaferin A in glioblastomas involves induction of an oxidative stress-mediated heat shock response while altering Akt/m TOR and MAPK singaling pathways. Invest New Drugs 31: 545-557 (2013). |
[34] | Majumder BG: An Analytical Approach to Anti-Parkinsonian Effect of Bacopa Monnieri in the Context of Protein Vibration, International Journal of Biophysics 6(2), 22-25. (2016). Role of Protein Vibration in Anti-Alzheimer’s Effect of Ashwagandha (Withania Symnifera) – An Analytical Approach: International Journal of Biophysics 7(3), 41-47 (2017). |
[35] | Majumder BG: An Analytical Approach to Modulating Effects of Heat Shock proteins Towards Immune Responses of Cancer in the context Protein Vibration, International Journal of Biophysics, 7(1), 8-15, (2017). |