[1] | Brungs, S., Hauslage, J., Hilbig, R., Hemmersbach, R., Anken, R., 2011, Effects of simulated weightlessness on fish otolith growth Clinostat versus Rotating-Wall Vessel, Adv. Space Res., 48, 792–798. |
[2] | Hausmann, N., Fengler, S., Hennig, A., Franz-Wachtel, M., Hampp, R., Neef, M., 2014, Cytosolic calcium, hydrogen peroxide and related gene expression and protein modulation in Arabidopsis thaliana cell cultures respond immediately to altered gravitation: parabolic flight data. Plant Biol., 16, 120–128. |
[3] | Qi, K., Mian, L., Yuanzhong, Z., Li, D., Jianfu, Z., Shenhua, Xu., Shangfeng, W., 2014, Advances of Micro-g sciences, Chin. J. Space Sci., 34(5), 733-739. |
[4] | Becker, W., Marxen, J., Epple, M., Reelsen, O., 2000, Influence of Micro-g on crystal formation in biomineralization, J. Appl. Physiol., 89, 1601–1607. |
[5] | Luz, G.M., and Mano, J. F., 2010, Mineralized structures in nature: Examples and inspirations for the design of new composite materials and biomaterials. Composites Science and Technology, 70, 1777–1788. |
[6] | Boonsirichai, K., Guan, C., Chen, R., Masson, P.H., 2002, Root gravitropism: An experimental tool to investigate basic cellular and molecular processes underlying mechanosensing and signal transmission in plants, Annu. Rev. Plant Biol., 53, 421-447. |
[7] | Strohm, A. K., Barrett-Wilt, G. A., Masson, P. H., 2014, A functional TOC complex contributes to gravity signal transduction in Arabidopsis, Front. Plant Sci., 5, 148. |
[8] | Sugimoto, M., Oono, Y., Gusev, O., Matsumoto, T., Yazawa, T., Levinskikh, M. A., Sychev, V. N., Bingham, G. E., Wheeler, R., Hummerick, M., 2014, Genome-wide expression analysis of reactive oxygen species gene network in Mizuna plants grown in long-term spaceflight, BMC Plant Biol. 14, 4. |
[9] | Herranz, R., Anken, R., Boonstra, J., Braun, M., Christianen, P.C.M., De Geest, M., Hauslage, J. Hilbig, R., Hill, R.J.A., Lebert, M., Medina, F. J., Vagt, N., Ullrich, O., Van Loon, J., Hemmersbach, R. 2013. Ground-based facilities for simulation of Micro-g: organism-specific recommendations for their use, and recommended terminology, Astrobiology, 13(1), 1-17. |
[10] | Eiermann, P., Kopp, S., Hauslage, J., Hemmersbach, R., Gerzer, R., Ivanova, K., 2013, Adaptation of a 2-D Clinostat for Simulated Micro-g Experiments with Adherent Cells, Micro-g Sci. Technol., DOI 10.1007/s12217-013-9341-1. |
[11] | Barzegari, A., Saei, A. A., 2012, An Update to Space Biomedical Research: Tissue Engineering in Micro-g Bioreactors, BI, 2(1), 23-32. |
[12] | Aronne, G., De Micco, V., Ariaudo, P., De Pascale, S., 2003, The effect of uni-axial clinostatrotation on germination and root anatomy of Phaseolus vulgaris L., Plant Biosyst., 137(2), 155–162. |
[13] | Dedolph, R. R., Oemick, D. A., Wilson, B. R., Smith, G. R., 1967, Plant Physiol., Causal basis of gravity stimulus nullification by clinostat rotation, 42(10), 1373-83. |
[14] | Hirai, Y., Natsuisaka, M., Mashiko, T., Kanahara, M., Saito, Y., Yabu, H., Shimomura, M., Tsujii, K., 2014, Effect of Micro-g on the Formation of Honey comb-patterned Films by Dissipative Processes, Int. J. Micro-g Sci. Appl., 31, 3–10. |
[15] | Hoson, T., 2006, The mechanism and significance of gravity resistance in plants, J. Gravit. Physiol., 13, 97–100. |
[16] | Kittang, J. A-I, Hoson, T., Iversen, T-H., 2015, The Utilization of Plant Facilities on the International Space Station—The Composition, Growth, and Development of Plant Cell Walls under Micro-g Conditions, Plants, 4(1), 44-62. |
[17] | Rogers, M. J. B., Vogt, G. L., Wargo, M. J. 1997. Micro-g, A Teacher’s Guide with Activities in Science, Mathematics, and Technology, NASA, EG-1997-08-110-HQ. 177 p. |
[18] | United Nations, 2013, Teacher’s Guide to Plant Experiments in Micro-g. Programme on Space Applications. UNOOSA, New York. 45 p. |
[19] | M. Lappa, 1 Ed. Fluids, Materials & Microgravity, Numerical Techniques and Insights into the Physics. Elsevier, 2004. |
[20] | Dedolph, R. R., Dipert, M. H., 1971, The physical basis of gravity stimulus nullification by clinostat rotation. Plant Physiol., 47(6), 756-764. |
[21] | Hoson, T., Kamisaka, S., Masuda, Y., Yamashita, M., Buchen, B., 1997, Evaluation of the three-dimensional clinostat as a simulator of weightlessness, Planta, 203(1), 187-197. |
[22] | Van Loon, J. J., 2007, Some history and use of the Random Positioning Machine, RPM, in gravity related research, Adv. Space Res., 39(7), 1161-1165. |
[23] | Klaus, D. 2001. Clinostats and bioreactors. Gravit. Space Biol. Bull., 14(2), 55-64. |
[24] | Sarkar, D., Nagaya, T., Koga, K., Nomura, Y., Gruener, R., Seo, H. J., 2000, Culture in vector-averaged gravity under clinostat rotation results in apoptosis of osteoblastic ROS 17/2.8 cells”, J. Bone Miner. Res., 15(3), 489-98. |
[25] | Briegleb, W. 1992. Some qualitative and quantitative aspects of the fast-rotating clinostat as a research tool. ASGSB Bulletin, 5(2), 23-30. |
[26] | Clément, G., Rahm, P., Borasi, G., Slenzka, K., Ed 1., Fundamentals of Space Biology: Research on Cells, Animals, and Plants in Space. Verlag New York: Springer Science & Business Media, 2006, vol 18. |
[27] | Klaus, D. M., 2005, Clinostats and bioreactors. Gravit. Space Biol. Bull., 14, 55. |
[28] | Koesnarpadi, S., Santos, J., Siswanta, D., Rusdiars, B., 2015, Synthesis and characterization of Magnetite Nanoparticle Coated HumicAcid (Fe3O4/HA), Procedia Environ. Sci., 30, 103-108. |
[29] | Niu, A., Ochiai, M., Haubold, H., Doi, T., 2012, The United Nations Human Space Technology Initiative (HSTI): Science Activities, 63rd International Astronautical Congress, United Nations Office for Outer Space Affairs, United Nations Office at Vienna, Austria. Naples, Italy, IAC-12-A2.5.11. |
[30] | Shimazu, T., Yuda, T., Miyamoto, K., Yamashita, M., Ueda, J., 2001, Growth and development in higher plants under Simulated Micro-g conditions on a 3-Dimensional clinostat. Adv. Space Rex., 27(5), 995-1000. |
[31] | Whitesides, G., Boncheva, M., 2002, Beyond molecules: Self-assembly of mesoscopic and macroscopic components, PNAS, 16, 4769-4774. |
[32] | Chen, Z., 2001, Colloidal hard-sphere crystallization kinetics in Micro-g and normal gravity, Appl. Opt., 40, 4146-51. |
[33] | Jagannath, A. A. 2013. Characterization and application of silver nanoparticles biosynthesized under control and clinorotation. Friedrich-Alexander-University of Erlangen-Nürnberg, doi: 10.13140/RG.2.1.3076.5600. |
[34] | Soykal, I., Sohn, H., Bayram, B., Gawad, P., Snyder, M., Levine, S., Oz, H., Ozkan, U., 2015, Effect of Micro-g on Synthesis of Nano Ceria. Catalysts 5, 1306-1320. |
[35] | Ryu, J., Ku, S., Lee, H., Park, C., 2010, Mussel-Inspired Polydopamine Coating as a Universal Route to Hydroxyapatite Crystallization, Adv. Funct. Mater., 20, 2132–2139. |
[36] | Jung, S., Oh, E., Lee, K., Yang, Y., Park, C., Park, W., Jeong, S., 2008, Sonochemical Preparation of Shape-Selective ZnO Nanostructures, Cryst. Growth Des., 8, 266-269. |
[37] | Reed, J., Cook, A. D., Parazzoli, A., Robinson, A., Matula, T., Grieser, T., 2003, The effects of Micro-g on nanoparticle size distributions generated by the ultrasonic reduction of an aqueous gold-chloride solution. Ultrason. Sonochem., 10, 285–289. |
[38] | L. Juseok, “Synthesis of biphasic Al/Al2O3 nanostructures under Micro-g and laser structuring on l/Al2O3 surfaces for selective cell guidance Chemie, Pharmazie, Bio-und Werkstoffwissenschaften”. Thesis der Universität des Saarlandes. 2013. |
[39] | Li, Y., Carotenuto, L., 1992, Investigation into thin films under Micro-g, Acta Mech Sin, 8, 97-103. |
[40] | Matía, I., González-Camacho, F., Herranz, R., Kiss, J. Z., Gasset, G., Loon, J., Marco, R., Medina, F.J., 2010, Plant cell proliferation and growth are altered by Micro-g conditions in spaceflight, J. Plant Physiol., 167, 184–193. |
[41] | Kordyum, E. L., 2013, Plant cell gravisensitivity and adaptation to Micro-g, Plant Biol., 16(1), 79–90. |
[42] | Ruyters, G., Spiero, F., Legué, V., Palme, K., 2014, Plant biology in space. Plant Biol., 16(1), 1-3. |
[43] | Vandenbrink, J. P., Kiss, J. Z., 2016, Space, the final frontier: A critical review of recent experiments performed in Micro-g, Plant Sci., 243, 115-119. |
[44] | Hoson, T., Kamisaka, S., Mori, R., Saiki, M., Nakamura, Y., Wakabayashi, K., Kamisaka, S., 2002, Stimulation of Elongation Growth and Cell Wall Loosening in Rice Coleoptiles under Micro-g Conditions in Space, Plant Cell Physiol., 43(9), 1067–1071. |
[45] | Wolff, S. A., Coelho, L. H., Karoliussen, I., Jost, A-I. K., 2014, Effects of the extraterrestrial environment on plants: recommendations for future space experiments for the MELiSSA higher plant compartment, Life, 4, 189–204. |
[46] | Nakabayashi, I., Karahara I., Tamaoki, D., Masuda, K., Wakasugi, T., Yamada, K., Soga, K., Hoson, T., Kamisaka, S., 2006, Hypergravity stimulus enhances primary xylem development and decreases mechanical properties of secondary cell walls in inflorescence stems of Arabidopsis thaliana. Ann. Bot., 97, 1083–1090. |
[47] | Matía, I., González-Camacho, F., Marco, R., Kiss, J.Z., Gasset, G., Medina, F-J., 2005, Nucleolar structure and proliferation activity of Arabidopsis root cells from seedlings germinated on the International Space Station, Adv. Space Res., 36, 1244–1253. |
[48] | Moore, R., Fondren, W. M., 1988, A gradient of endogenous calcium forms in mucilage of graviresponding roots of Zea mays. Ann. Bot., 61(1), 113–116. |
[49] | Toker, A., 2002, Phosphoinositides and signal transduction. Cell Mol. Life Sci., 59, 761–779. |
[50] | Joo, J. H., Bae, Y. S., Lee, J. S., 2001, Role of auxin-induced reactive oxygen species in root gravitropism, Plant Physiol., 126, 1055–1060. |
[51] | Carman, J. G., Hole, P., Salisbury, F.B., Bingham, G. E., 2015, Developmental, nutritional and hormonal anomalies of weightlessness-grown wheat. Life Sci. Space Res., 6, 59-68. |
[52] | Moseyko, N., Zhu, T., Chang, H. S., Wang, X., Feldman, L. J., 2002, Transcription profiling of the early gravitropic response in Arabidopsis using high-density oligonucleotide probe microarrays. Plant Physiol., 130, 720-728. |
[53] | J. M. Kimbrough, R. Salinas-Mondragon, W. F. Boss, C. S. Brown, H. W. Sederoff, The Fast and Transient Transcriptional Network of Gravity and Mechanical Stimulation in the Arabidopsis Root Apex. Plant Physiology vol. 136, pp. 2790-2805, 2004. |
[54] | Xiong, Y., Sheen, J., 2014, The role of target of rapamycin signaling networks in plant growth and metabolism, Plant Physiol., 164, 499-512. |
[55] | Grimm, D., Grosse, J., Wehland, M., Mann, V., Reseland, J. E., Sundaresan, A., Corydon, T. J., 2016, The impact of microgravity on bone in humans. Bone, 87:44-56. |
[56] | Ulbrich, C., Wehland, M., Pietsch, J., Aleshcheva, G., Wise, P., Van Loon, J., Magnusson, N., Infanger, M., Grosse, J., Eilles, Ch., 2014, The Impact of Simulated and Real Micro-g on Bone Cells and Mesenchymal Stem Cells. BioMed Res. Int., doi: http://dx.doi.org/10.1155/2014/928507. |
[57] | Kapitonova, M. Y., Salim, N., Othman, S., Kamauzaman, T. M., Ali, A.M., 2013, Alteration of cell cytoskeleton and functions of cell recovery of normal human osteoblast cells caused by factors associated with real space flight, Malays J. Pathol., 35(2), 153–163. |
[58] | Zayzafoon, M., Gathings, W. E., McDonald, J. M., 2004, Modeled Micro-g Inhibits Osteogenic Differentiation of Human Mesenchymal Stem Cells and Increases Adipogenesis. Endocrinology, 145(5), 2421-2432. |
[59] | Sayson, J. V., 2015, Micro-g-Induced Back Pain and Intervertebral Disc Herniation: International Space Station Results. 66th Jerusalem Conf. International Astronautical Jerusalem, Israel, October 12-16. |
[60] | Aliverti, A., Frigo, C., Andreoni, G., Baroni, G., Bonarini, A., Cerveri, P., Crivellini, M., Dellacà, R., Ferrigno, G., Galli, M., Pedrocchi, A., Rodano, R., Santambrogio, G. C., Tognola, G., Pedotti, A. 2011. Functional Evaluation and Rehabilitation Engineering, IEEE PULSE, 2(3):24-34. |
[61] | Paxton, J. Z., Baar, K., Grover, L. M., 2012, Current Progress in Enthesis Repair: Strategies for Interfacial Tissue Engineering. Orthop. Muscular Syst., S1, 003, doi:10.4172/2161-0533.S1-003. |
[62] | Rodionova, N. V., Shevel, I. M., Oganov, V. S., Novikov, V. E., Kabitskaya, O. E., 2000, Bone ultrastructural changes in Bion 11 rhesus monkeys, J. Gravit. Physiol., 7, 157-161. |
[63] | Bloomfield, S. A., Martínez, D. A., Bourdreaux, R. D., Mantri, A. V., 2016, Microgravity Stress: Bone and Conective Tissue. Compr. Physiol., 6:645-686. |
[64] | Jha, R., Wu, Q., Singh, M., Preininger, M. K., Han, P., Ding, G., Cho, H. C., Jo, H., Maher, K. O., Wagner, M. B., Xu, C., 2016, Simulated Microgravity and 3D Culture Enhance Induction, Viability, Proliferation and Differentiation of Cardiac Progenitors from Human Pluripotent Stem Cells. Sci. Rep., 6(30956):1-14. |
[65] | Wang, Y, An, L., Jiang, Y., Hang, H., 2011, Effects of Simulated Micro-g on Embryonic Stem Cells. PLoS ONE, 6(12), e29214, doi:10.1371/ journal.pone.0029214. |