[1] | M. Carangelo, Semeraro, "From multitude to singularity: An up-to-date overview of scRNA-seq data generation and analysis," frontiers, 2022. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fgene.2022.994069/full. |
[2] | Y. H. S. Kejie Li, Zhengyu Ouyang, Soumya Negi, Zhen Gao, Jing Zhu, Wanli Wang, Yirui Chen, Sarbottam Piya, Wenxing Hu, Maria I. Zavodszky, Hima Yalamanchili, Shaolong Cao, Andrew Gehrke, Mark Sheehan, Dann Huh, Fergal Casey, Xinmin Zhang & Baohong Zhang, "scRNASequest: an ecosystem of scRNA-seq analysis, visualization, and publishing," BMC Genomics, 2023. [Online]. Available: https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-023-09332-2. |
[3] | J. E. Ashraful Haque, Sarah A. Teichmann & Tapio Lönnberg "A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications," Genome Medicine, 2017. [Online]. Available: https://genomemedicine.biomedcentral.com/articles/10.1186/s13073-017-0467-4. |
[4] | G. C. B. N. T. Shi1*, "Single-Cell RNA-Seq Technologies and Related Computational Data Analysis," frontiers, 2019. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fgene.2019.00317/full. |
[5] | Z. F. Jiajia Liu, Weiling Zhao, Xiaobo Zhou, "Machine Intelligence in Single-Cell Data Analysis: Advances and New Challenges," frontiers, 2021. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fgene.2021.655536/full. |
[6] | "Seurat v5," ed. |
[7] | T. P. Min Su, Qiu-Zhen Chen, Wei-Wei Zhou, Yi Gong, Gang Xu, Huan-Yu Yan, Si Li, Qiao-Zhen Shi, Ya Zhang, Xiao He, Chun-Jie Jiang, Shi-Cai Fan, Xia Li, Murray J. Cairns, Xi Wang & Yong-Sheng Li, "Data analysis guidelines for single-cell RNA-seq in biomedical studies and clinical applications," Military Medical Research volume, 2022. [Online]. Available: https://mmrjournal.biomedcentral.com/articles/10.1186/s40779-022-00434-8. |
[8] | Z. J. Wenpin Hou, Hongkai Ji & Stephanie C. Hicks "A systematic evaluation of single-cell RNA-sequencing imputation methods," Genome Biology, 2020. [Online]. Available: https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02132-x. |
[9] | "CITE-Seq," ed. |
[10] | A. W. Adam Gayoso, "Getting started with anndata," ed. |
[11] | Isaac Virshup1, Sergei Rybakov2, F. J. T. , 3, Philipp, and Angerer2, ‡, and F. Alexander Wolf2,†,, "anndata: Annotated data," The Journal of Open Source Software, 2021. [Online]. Available: https://www.biorxiv.org/content/biorxiv/early/2021/12/19/2021.12.16.473007.full.pdf. |
[12] | L. T. Yue You, Shian Su, Xueyi Dong, Jafar S. Jabbari, Peter F. Hickey & Matthew E. Ritchie, "Benchmarking UMI-based single-cell RNA-seq preprocessing workflows," Genome Biology, 2021. [Online]. Available: https://genomebiology.biomedcentral.com/articles/10.1186/s13059-021-02552-3. |
[13] | "Pre-processing of Single-Cell RNA Data." [Online]. Available: https://training.galaxyproject.org/training-material/topics/single-cell/tutorials/scrna-preprocessing/tutorial.html. |
[14] | "scRNA-seq data preparation," ed. |
[15] | "Mitochondrial DNA," in Mitochondrial DNA, ed. |
[16] | "Human mitochondrial genetics," in Wikipedia, ed. |
[17] | V.-J. A. View ORCID ProfilePadron-Manrique Cristian, Esquivel-Hernandez Diego Armando, Martinez Lopez Yoscelina Estrella, Neri-Rosario Daniel, Sánchez-Castañeda Jean Paul, Giron-Villalobos David, View ORCID ProfileResendis-Antonio Osbaldo, "Diffusion on PCA-UMAP manifold captures a well-balance of local, global, and continuum structure to denoise single-cell RNA sequencing data," bioRxiv, 2022. [Online]. Available: https://www.biorxiv.org/content/10.1101/2022.06.09.495525v1.full. |
[18] | C. V. J.-P. V. Felix Raimundo, "Tuning parameters of dimensionality reduction methods for single-cell RNA-seq analysis," Genome Biology, 2020. [Online]. Available: https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02128-7. |
[19] | [Yuto Hozumi1 and Guo-Wei Wei1, 3∗ et al., "Analyzing scRNA-seq data by CCP-assisted UMAP and t-SNE," arxiv, 2023. [Online]. Available: https://arxiv.org/pdf/2306.13750.pdf. |
[20] | "Single-cell RNA-seq: Integration," ed. |
[21] | "Introduction to Dimensionality Reduction," in Geeksforgeeks, ed. |
[22] | "Dimensionality Reduction Algorithms: Strenghs and Weaknesses," ed, 2022. |
[23] | N. Kumar, "Dimensionality Reduction Technique," ed, 2023. |
[24] | D. Nelson, "What is Dimensionality Reduction?," ed, 2020. |
[25] | B. Pandit, "POPULAR DIMENSIONALITY REDUCTION TECHNIQUES EVERY DATA SCIENTIST SHOULD LEARN," ed. |
[26] | "What is Dimensionality Reduction? Overview, and Popular Techniques," ed, 2023. |
[27] | "Leiden," ed. |
[28] | L. W. Vincent Traag, Nees Jan van Eck, "Using the Leiden algorithm to find well-connected clusters in networks," in CWTS, ed, 2018. |
[29] | Y. C. Lijia Yu, Jean Y. H. Yang & Pengyi Yang "Benchmarking clustering algorithms on estimating the number of cell types from single-cell RNA-sequencing data," Genome Biology, 2022. [Online]. Available: https://genomebiology.biomedcentral.com/articles/10.1186/s13059-022-02622-0. |
[30] | M. C. M. Defrance, "Contrastive self-supervised clustering of scRNA-seq data," BMC Bioinformatics 2021. [Online]. Available: https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-021-04210-8. |
[31] | Z. L. aphael Petegrosso, Rui Kuang, "Machine learning and statistical methods for clustering single-cell RNA-sequencing data," Briefings in Functional Genomics, 2020. [Online]. Available: https://academic.oup.com/bib/article/21/4/1209/5519426. |
[32] | R. H. T. Joy Saha, View ORCID ProfileMd. Abul Hassan Samee, View ORCID ProfileAtif Rahman, "Probabilistic clustering of cells using single-cell RNA-seq data," BioRxiv, 2023. [Online]. Available: https://www.biorxiv.org/content/10.1101/2023.12.12.571199v1. |
[33] | R. D. G.-C. Yuan, "GiniClust3: a fast and memory-efficient tool for rare cell type identification," BMC Bioinformatics, 2020. [Online]. Available: https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-020-3482-1. |
[34] | "Clustering," ed. |
[35] | "Modularity (networks)." [Online]. Available: https://en.wikipedia.org/wiki/Modularity_%28networks%29. |
[36] | A. M. Greg Finak, Masanao Yajima, Jingyuan Deng, Vivian Gersuk, Alex K. Shalek, Chloe K. Slichter, Hannah W. Miller, M. Juliana McElrath, Martin Prlic, Peter S. Linsley & Raphael Gottardo "MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data," Genome Biology, 2015. [Online]. Available: https://genomebiology.biomedcentral.com/articles/10.1186/s13059-015-0844-5. |
[37] | A. S. a. K. Korthauer, "Case Study: scRNA-seq (Human data, Wilcoxon-ranksum method)," ed, 2018. |
[38] | "Differential Gene Expression Analysis in scRNA-seq Data between Conditions with Biological Replicates," ed, 2023. |
[39] | S. L. Mengqi Zhang, Zhen Miao, Fang Han, Raphael Gottardo & Wei Sun "IDEAS: individual level differential expression analysis for single-cell RNA-seq data," 2022. [Online]. Available: https://genomebiology.biomedcentral.com/articles/10.1186/s13059-022-02605-1. |
[40] | Y. Z. K. X. Xu Chang, "Single-Cell RNA Sequencing: Technological Progress and Biomedical Application in Cancer Research," 2023. [Online]. Available: https://link.springer.com/article/10.1007/s12033-023-00777-0. |
[41] | J. Z. C. R. D. R. Y. a. L. D. L. L. C. G. T. J. Y. J. Liu2*, "A Novel Single-Cell RNA Sequencing Data Feature Extraction Method Based on Gene Function Analysis and Its Applications in Glioma Study," frontiers, 2021. [Online]. Available: http://985.so/w1z2t. |
[42] | A. A. V. Anna A. Khozyainova, Mikhail S. Arbatsky, Sergey V. Isaev, Pavel S. Iamshchikov, Egor V. Volchkov, Marat S. Sabirov, Viktoria R. Zainullina, Vadim I. Chechekhin, Rostislav S. Vorobev, Maxim E. Menyailo, Pyotr A. Tyurin-Kuzmin & Evgeny V. Denisov Complex Analysis of Single-Cell RNA Sequencing Data. 2023. |
[43] | "Functional annotation of a gene list," ed. |
[44] | R. E. C. K. T. K. Carlos A. Ruiz-Perez, "MicrobeAnnotator: a user-friendly, comprehensive functional annotation pipeline for microbial genomes," BMC Bioinformatics, 2021. [Online]. Available: https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-020-03940-5. |
[45] | "Python Software Foundation," ed. |
[46] | M. S. K. Yuanchao Zhang, Erin R. Reichenberger, Ben Stear, Deanne M. Taylor, "Scedar: A scalable Python package for single-cell RNA-seq exploratory data analysis," Plos Computational Biology, 2020. [Online]. Available: https://journals.plos.org/ploscompbiol/article?id=10.1371%2Fjournal.pcbi.1007794. |
[47] | "Python (programming language)," in Wikipedia, ed. |
[48] | "snakemake-workflows," ed. |
[49] | "What Is Python Used For? A Beginner’s Guide," ed. |
[50] | "What is Python?," ed. |
[51] | "What is Python? Executive Summary," ed. |
[52] | "Pallets Projects," ed. |
[53] | "Intel Labs Accelerates Single-cell RNA-Seq Analysis," ed. |
[54] | "Flask (web framework)," ed. |
[55] | "Flask 3.0.0," ed. |
[56] | L. Z. F. J. Theis, "Over 1000 tools reveal trends in the single-cell RNA-seq analysis landscape," Genome Biology, 2021. [Online]. Available: https://genomebiology.biomedcentral.com/articles/10.1186/s13059-021-02519-4. |
[57] | L. T. Ralf Schulze Brüning, Marcel H Schulz, Stefanie Dimmeler, David John, "Comparative analysis of common alignment tools for single-cell RNA sequencing," OXFORD ACADEMIC, 2022. [Online]. Available: https://academic.oup.com/gigascience/article/doi/10.1093/gigascience/giac001/6515741. |
[58] | "Comparing and combining scRNA-seq datasets," ed. |
[59] | D. H. Xin Gao, Madelaine Gogol, Hua Li, "ClusterMap: compare multiple single cell RNA-Seq datasets across different experimental conditions," OXFORD ACADEMIC, 2019. [Online]. Available: https://academic.oup.com/bioinformatics/article/35/17/3038/5289328. |
[60] | S. D. Aanchal Malhotra, Shesh N. Rai "Analysis of Single-Cell RNA-Sequencing Data: A Step-by-Step Guide," 2021. [Online]. Available: https://www.mdpi.com/2673-7426/2/1/3. |
[61] | "Chapter 3 Getting scRNA-seq datasets," ed. |
[62] | A. C. Shaked Slovin, Francesco Panariello, Antonio Grimaldi, Valentina Bouché, Gennaro Gambardella & Davide Cacchiarelli "Single-Cell RNA Sequencing Analysis: A Step-by-Step Overview," 2021. [Online]. Available: https://link.springer.com/protocol/10.1007/978-1-0716-1307-8_19. |
[63] | K. R. V.-E. Sinan U Umu, Victoria T Karlsen, Manto Chouliara, Espen Sønderaal Bækkevold, Frode Lars Jahnsen, Diana Domanska, "Cellsnake: a user-friendly tool for single-cell RNA sequencing analysis " GigaScience, 2023. [Online]. Available: https://academic.oup.com/gigascience/article/doi/10.1093/gigascience/giad091/7330891. |
[64] | M. R. View ORCID ProfileLaura M. Richards, Suluxan Mohanraj, Shamini Ayyadhury, Danielle C. Croucher, View ORCID ProfileJ. Javier Díaz-Mejía, Fiona J. Coutinho, Peter B. Dirks, Trevor J. Pugh, "A comparison of data integration methods for single-cell RNA sequencing of cancer samples," bioRxiv, 2021. [Online]. Available: https://www.biorxiv.org/content/10.1101/2021.08.04.453579v1. |
[65] | T. W. Yang Liu, Deyou Zheng, "RISC: robust integration of single-cell RNA-seq datasets with different extents of cell cluster overlap," bioRxiv, 2018. [Online]. Available: https://www.biorxiv.org/content/10.1101/483297v1.full.pdf. |
[66] | M. Tomasz Kujawa, Polanska, "Influence of single-cell RNA sequencing data integration on the performance of differential gene expression analysis," frontiers, 2022. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fgene.2022.1009316/full. |