[1] | Xu, G. Y., Qiu, Y., & Mao, H. J. (2014). Common polymorphism in the LRP5 gene may increase the risk of bone fracture and osteoporosis. BioMed research international, 2014, 290531. |
[2] | Williams, B. O., & Insogna, K. L. (2009). Where Wnts went: the exploding field of Lrp5 and Lrp6 signaling in bone. Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research, 24(2), 171–178. |
[3] | Laine, C. M., Chung, B. D., Susic, M., Prescott, T., Semler, O., Fiskerstrand, T., D'Eufemia, P., Castori, M., Pekkinen, M., Sochett, E., Cole, W. G., Netzer, C., & Mäkitie, O. (2011). Novel mutations affecting LRP5 splicing in patients with osteoporosis-pseudoglioma syndrome (OPPG). European journal of human genetics: EJHG, 19(8), 875–881. |
[4] | Gong, Y., Slee, R. B., Fukai, N., Rawadi, G., Roman-Roman, S., Reginato, A. M., Wang, H., Cundy, T., Glorieux, F. H., Lev, D., Zacharin, M., Oexle, K., Marcelino, J., Suwairi, W., Heeger, S., Sabatakos, G., Apte, S., Adkins, W. N., Allgrove, J., Arslan-Kirchner, M., … Osteoporosis-Pseudoglioma Syndrome Collaborative Group (2001). LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell, 107(4), 513–523. |
[5] | Goh, M., Nguyen, H. H., Khan, N. N., Milat, F., Boyle, J. A., & Vincent, A. J. (2019). Identifying and addressing osteoporosis knowledge gaps in women with premature ovarian insufficiency and early menopause: A mixed-methods study. Clinical endocrinology, 91(4), 498–507. |
[6] | Wang, Q. F., Bi, H. S., Qin, Z. L., Wang, P., Nie, F. F., & Zhang, G. W. (2020). Associations of LRP5 Gene With Bone Mineral Density, Bone Turnover Markers, and Fractures in the Elderly With Osteoporosis. Frontiers in endocrinology, 11, 571549. |
[7] | Hey, P. J., Twells, R. C., Phillips, M. S., Yusuke Nakagawa, Brown, S. D., Kawaguchi, Y., Cox, R., Guochun Xie, Dugan, V., Hammond, H., Metzker, M. L., Todd, J. A., & Hess, J. F. (1998). Cloning of a novel member of the low-density lipoprotein receptor family. Gene, 216(1), 103–111. |
[8] | Chen, L., Heikkinen, L., Wang, C., Yang, Y., Sun, H., & Wong, G. (2019). Trends in the development of miRNA bioinformatics tools. Briefings in bioinformatics, 20(5), 1836–1852. |
[9] | Jiang, L., Ding, Y., Tang, J., & Guo, F. (2018). MDA-SKF: Similarity Kernel Fusion for Accurately Discovering miRNA-Disease Association. Frontiers in genetics, 9, 618. |
[10] | Zhang, T., Jiang, K., Zhu, X., Zhao, G., Wu, H., Deng, G., & Qiu, C. (2018). miR-433 inhibits breast cancer cell growth via the MAPK signaling pathway by targeting Rap1a. International journal of biological sciences, 14(6), 622–632. |
[11] | Warde-Farley, D., Donaldson, S. L., Comes, O., Zuberi, K., Badrawi, R., Chao, P., Franz, M., Grouios, C., Kazi, F., Lopes, C. T., Maitland, A., Mostafavi, S., Montojo, J., Shao, Q., Wright, G., Bader, G. D., & Morris, Q. (2010). The GeneMania prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic acids research, 38(Web Server issue), W214–W220. |
[12] | Sengupta, M., & Das, M. (2023). Analysis of Missense SNPs in Human LRP5 Gene by in silico Approach. Applied Biological Research 25(3): 348-360. |
[13] | Wang X. (2008). miRDB: a microRNA target prediction and functional annotation database with a wiki interface. RNA (New York, N.Y.), 14(6), 1012–1017. |
[14] | Lewis, B. P., Burge, C. B., & Bartel, D. P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120(1), 15–20. |
[15] | King, B. L., Rosenstein, M. C., Smith, A. M., Dykeman, C. A., Smith, G. A., & Yin, V. P. (2018). RegenDbase: a comparative database of noncoding RNA regulation of tissue regeneration circuits across multiple taxa. NPJ Regenerative medicine, 3, 10. |
[16] | Kern, F., Aparicio-Puerta, E., Li, Y., Fehlmann, T., Kehl, T., Wagner, V., Ray, K., Ludwig, N., Lenhof, H. P., Meese, E., & Keller, A. (2021). miRTargetLink 2.0-interactive miRNA target gene and target pathway networks. Nucleic acids research, 49(W1), W409–W416. |
[17] | Alatan, H., Chen, Y., Zhou, J., & Wang, L. (2021). Extracellular Matrix-Related Hubs Genes Have Adverse Effects on Gastric Adenocarcinoma Prognosis Based on Bioinformatics Analysis. Genes, 12(7), 1104. |
[18] | Semënov, M., Tamai, K., & He, X. (2005). SOST is a ligand for LRP5/LRP6 and a Wnt signaling inhibitor. The Journal of biological chemistry, 280(29), 26770–26775. |
[19] | Ding, Y., Xi, Y., Chen, T., Wang, J. Y., Tao, D. L., Wu, Z. L., Li, Y. P., Li, C., Zeng, R., & Li, L. (2008). Caprin-2 enhances canonical Wnt signaling through regulating LRP5/6 phosphorylation. The Journal of cell biology, 182(5), 865–872. |
[20] | Ahn, V. E., Chu, M. L., Choi, H. J., Tran, D., Abo, A., & Weis, W. I. (2011). Structural basis of Wnt signaling inhibition by Dickkopf binding to LRP5/6. Developmental cell, 21(5), 862–873. |
[21] | Patel, S., Barkell, A. M., Gupta, D., Strong, S. L., Bruton, S., Muskett, F. W., Addis, P. W., Renshaw, P. S., Slocombe, P. M., Doyle, C., Clargo, A., Taylor, R. J., Prosser, C. E., Henry, A. J., Robinson, M. K., Waters, L. C., Holdsworth, G., & Carr, M. D. (2018). Structural and functional analysis of Dickkopf 4 (Dkk4): New insights into Dkk evolution and regulation of Wnt signaling by Dkk and Kremen proteins. The Journal of biological chemistry, 293(31), 12149–12166. |
[22] | Niehrs C. (2006). Function and biological roles of the Dickkopf family of Wnt modulators. Oncogene, 25(57), 7469–7481. |
[23] | Dai, Z., Jin, Y., Zheng, J., Liu, K., Zhao, J., Zhang, S., Wu, F., & Sun, Z. (2019). MiR-217 promotes cell proliferation and osteogenic differentiation of BMSCs by targeting DKK1 in steroid-associated osteonecrosis. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 109, 1112–1119. |
[24] | Sun, S., Yu, M., Fan, Z., Yeh, I. T., Feng, H., Liu, H., & Han, D. (2019). DLX3 regulates osteogenic differentiation of bone marrow mesenchymal stem cells via Wnt/β-catenin pathway mediated histone methylation of DKK4. Biochemical and biophysical research communications, 516(1), 171–176. |
[25] | Shimomura, Y., Agalliu, D., Vonica, A., Luria, V., Wajid, M., Baumer, A., Belli, S., Petukhova, L., Schinzel, A., Brivanlou, A. H., Barres, B. A., & Christiano, A. M. (2010). APCDD1 is a novel Wnt inhibitor mutated in hereditary hypotrichosis simplex. Nature, 464(7291), 1043–1047. |
[26] | Gazit, A., Yaniv, A., Bafico, A., Pramila, T., Igarashi, M., Kitajewski, J., & Aaronson, S. A. (1999). Human frizzled 1 interacts with transforming Wnts to transduce a TCF dependent transcriptional response. Oncogene, 18(44), 5959–5966. |
[27] | Saitoh, T., Hirai, M., & Katoh, M. (2001). Molecular cloning and characterization of human Frizzled-8 gene on chromosome 10p11.2. International journal of oncology, 18(5), 991–996. |
[28] | García-Ibarbia, C., Delgado-Calle, J., Casafont, I., Velasco, J., Arozamena, J., Pérez-Núñez, M. I., Alonso, M. A., Berciano, M. T., Ortiz, F., Pérez-Castrillón, J. L., Fernández, A. F., Fraga, M. F., Zarrabeitia, M. T., & Riancho, J. A. (2013). Contribution of genetic and epigenetic mechanisms to Wnt pathway activity in prevalent skeletal disorders. Gene, 532(2), 165–172. |
[29] | Yang, S., Wu, Y., Xu, T. H., de Waal, P. W., He, Y., Pu, M., Chen, Y., DeBruine, Z. J., Zhang, B., Zaidi, S. A., Popov, P., Guo, Y., Han, G. W., Lu, Y., Suino-Powell, K., Dong, S., Harikumar, K. G., Miller, L. J., Katritch, V., Xu, H. E., … Xu, F. (2018). Crystal structure of the Frizzled 4 receptor in a ligand-free state. Nature, 560(7720), 666–670. |
[30] | Goto, T., Matsuzawa, J., Iemura, S., Natsume, T., & Shibuya, H. (2016). WDR26 is a new partner of Axin1 in the canonical Wnt signaling pathway. FEBS letters, 590(9), 1291–1303. |
[31] | Eubelen, M., Bostaille, N., Cabochette, P., Gauquier, A., Tebabi, P., Dumitru, A. C., Koehler, M., Gut, P., Alsteens, D., Stainier, D. Y. R., Garcia-Pino, A., & Vanhollebeke, B. (2018). A molecular mechanism for Wnt ligand-specific signaling. Science (New York, N.Y.), 361(6403), eaat1178. |
[32] | Keupp, K., Beleggia, F., Kayserili, H., Barnes, A. M., Steiner, M., Semler, O., Fischer, B., Yigit, G., Janda, C. Y., Becker, J., Breer, S., Altunoglu, U., Grünhagen, J., Krawitz, P., Hecht, J., Schinke, T., Makareeva, E., Lausch, E., Cankaya, T., Caparrós-Martín, J. A., … Wollnik, B. (2013). Mutations in WNT1 cause different forms of bone fragility. American journal of human genetics, 92(4), 565–574. |
[33] | Laine, C. M., Joeng, K. S., Campeau, P. M., Kiviranta, R., Tarkkonen, K., Grover, M., Lu, J. T., Pekkinen, M., Wessman, M., Heino, T. J., Nieminen-Pihala, V., Aronen, M., Laine, T., Kröger, H., Cole, W. G., Lehesjoki, A. E., Nevarez, L., Krakow, D., Curry, C. J., Cohn, D. H., … Mäkitie, O. (2013). WNT1 mutations in early-onset osteoporosis and osteogenesis imperfecta. The New England journal of medicine, 368(19), 1809–1816. |
[34] | Kim, J. M., Lin, C., Stavre, Z., Greenblatt, M. B., & Shim, J. H. (2020). Osteoblast-Osteoclast Communication and Bone Homeostasis. Cells, 9(9), 2073. |
[35] | Feng, B., Pei, J., & Gu, S. (2023). Wnt7b: Is It an Important Factor in the Bone Formation Process after Calvarial Damage?. Journal of clinical medicine, 12(3), 800. |
[36] | Koduri, V., & Blacklow, S. C. (2007). Requirement for natively unstructured regions of mesoderm development candidate 2 in promoting low-density lipoprotein receptor-related protein 6 maturation. Biochemistry, 46(22), 6570–6577. |
[37] | Abramova, M.Y., Ponomarenko, I.V. & Churnosov, M.I. The Polymorphic Locus rs167479 of the RGL3 Gene Is Associated with the Risk of Severe Preeclampsia. Russ J Genet 58, 1543–1550 (2022). |
[38] | Sun, M. S., Yuan, L. T., Kuei, C. H., Lin, H. Y., Chen, Y. L., Chiu, H. W., & Lin, Y. F. (2021). RGL2 Drives the Metastatic Progression of Colorectal Cancer via Preventing the Protein Degradation of β-Catenin and KRAS. Cancers, 13(8), 1763. |
[39] | Mao, B., Wu, W., Li, Y., Hoppe, D., Stannek, P., Glinka, A., & Niehrs, C. (2001). LDL-receptor-related protein 6 is a receptor for Dickkopf proteins. Nature, 411(6835), 321–325. |
[40] | Sun, L., Song, F., Liu, H., Wang, C., Tang, X., Li, Z., Ge, H., & Liu, P. (2020). The novel mutation P36R in LRP5L contributes to congenital membranous cataract via inhibition of laminin γ1 and c-MAF. Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie, 258(12), 2737–2751. |
[41] | Liu, S. L., Cai, C., Yang, Z. Y., Wu, Z. Y., Wu, X. S., Wang, X. F., Dong, P., & Gong, W. (2021). DGCR5 is activated by PAX5 and promotes pancreatic cancer via targeting miR-3163/TOP2A and activating Wnt/β-catenin pathway. International journal of biological sciences, 17(2), 498–513. |
[42] | Franks, A., Airoldi, E., & Slavov, N. (2017). Post-transcriptional regulation across human tissues. PLoS computational biology, 13(5), e1005535. |
[43] | You, G., Zu, B., Wang, B., Fu, Q., & Li, F. (2020). Identification of miRNA-mRNA-TFs Regulatory Network and Crucial Pathways Involved in Tetralogy of Fallot. Frontiers in genetics, 11, 552. |
[44] | Kelch, S., Balmayor, E. R., Seeliger, C., Vester, H., Kirschke, J. S., & van Griensven, M. (2017). miRNAs in bone tissue correlate to bone mineral density and circulating miRNAs are gender independent in osteoporotic patients. Scientific reports, 7(1), 15861. |
[45] | Li, T., Li, H., Wang, Y., Li, T., Fan, J., Xiao, K., Zhao, R.C. and Weng, X., 2016. microRNA-23a inhibits osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by targeting LRP5. The international journal of biochemistry & cell biology, 72, pp.55-62. |
[46] | Seeliger, C., Karpinski, K., Haug, A. T., Vester, H., Schmitt, A., Bauer, J. S., & van Griensven, M. (2014). Five freely circulating miRNAs and bone tissue miRNAs are associated with osteoporotic fractures. Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research, 29(8), 1718–1728. |
[47] | Lu, Z., Cao, H., & Hu, X. (2023). Circulating miR-340-5p and miR-506-3p as Two Osteo-miRNAs for Predicting Osteoporosis in a Cohort of Postmenopausal Women. Journal of environmental and public health, 2023, 7571696. |
[48] | Fang, Y., Feng, Y., Wu, T., Srinivas, S., Yang, W., Fan, J., Yang, C., & Wang, S. (2013). Aflatoxin B1 negatively regulates Wnt/β-catenin signaling pathway through activating miR-33a. PloS one, 8(8), e73004. |
[49] | Zhou, Z., Lu, Y., Wang, Y., Du, L., Zhang, Y., & Tao, J. (2019). Let-7c regulates proliferation and osteodifferentiation of human adipose-derived mesenchymal stem cells under oxidative stress by targeting SCD-1. American journal of physiology. Cell physiology, 316(1), C57–C69. |
[50] | Garg, B., Malhotra, R., Mittal, S., Kumar, A., Mehta, N., Malik, G., Gupta, M. and Trikha, V., 2022. Differential miRNA Expression in Osteoporotic Elderly Patients with Hip Fractures Compared to Young Patients. Indian Journal of Orthopaedics, 56(3), pp.399-411. |
[51] | Wu, Y. Z., Huang, H. T., Cheng, T. L., Lu, Y. M., Lin, S. Y., Ho, C. J., Lee, T. C., Hsu, C. H., Huang, P. J., Huang, H. H., Li, J. Y., Su, Y. D., Chen, S. C., Kang, L., & Chen, C. H. (2021). Application of microRNA in Human Osteoporosis and Fragility Fracture: A Systemic Review of Literatures. International journal of molecular sciences, 22(10), 5232. |
[52] | Ramírez-Salazar, E. G., Carrillo-Patiño, S., Hidalgo-Bravo, A., Rivera-Paredez, B., Quiterio, M., Ramírez-Palacios, P., Patiño, N., Valdés-Flores, M., Salmerón, J., & Velázquez-Cruz, R. (2018). Serum miRNAs miR-140-3p and miR-23b-3p as potential biomarkers for osteoporosis and osteoporotic fracture in postmenopausal Mexican-Mestizo women. Gene, 679, 19–27. |
[53] | Feichtinger, X., Muschitz, C., Heimel, P., Baierl, A., Fahrleitner-Pammer, A., Redl, H., Resch, H., Geiger, E., Skalicky, S., Dormann, R., Plachel, F., Pietschmann, P., Grillari, J., Hackl, M., & Kocijan, R. (2018). Bone-related Circulating MicroRNAs miR-29b-3p, miR-550a-3p, and miR-324-3p and their Association to Bone Microstructure and Histomorphometry. Scientific reports, 8(1), 4867. |
[54] | Weng, Y., Duan, W., Yu, X., Wu, F., Yang, D., Jiang, Y., Wu, J., Wang, M., Wang, X., Shen, Y., Zhang, Y., & Xu, H. (2023). MicroRNA-324-3p inhibits osteosarcoma progression by suppressing PGAM1-mediated aerobic glycolysis. Cancer science, 114(6), 2345–2359. |
[55] | Zhou, W., Liu, Y., & Wu, X. (2021). Down-regulation of circITCH promotes osteosarcoma development and resistance to doxorubicin via the miR-524/RASSF6 axis. The journal of gene medicine, 23(10), e3373. |
[56] | Zhuang, M., Qiu, X., Cheng, D., Zhu, C., & Chen, L. (2018). MicroRNA-524 promotes cell proliferation by down-regulating PTEN expression in osteosarcoma. Cancer cell international, 18, 114. |
[57] | Lu, J., Zhou, Z., Sun, B., Han, B., Fu, Q., Han, Y., Yuan, W., Xu, Z., & Chen, A. (2020). MiR-520d-5p modulates chondrogenesis and chondrocyte metabolism through targeting HDAC1. Aging, 12(18), 18545–18560. |
[58] | Wang, T., Liu, Y., Wang, Y., Huang, X., Zhao, W., & Zhao, Z. (2019). Long non-coding RNA XIST promotes extracellular matrix degradation by functioning as a competing endogenous RNA of miR-1277-5p in osteoarthritis. International journal of molecular medicine, 44(2), 630–642. |
[59] | Guo, Z., Wang, H., Zhao, F., Liu, M., Wang, F., Kang, M., He, W., & Lv, Z. (2021). Exosomal circ-BRWD1 contributes to osteoarthritis development through the modulation of miR-1277/TRAF6 axis. Arthritis research & therapy, 23(1), 159. |
[60] | Wang, C., Han, J., Liu, M., Huang, Y., Zhou, T., Jiang, N., Hui, H., & Xu, K. (2022). RNA-sequencing of human aortic valves identifies that miR-629-3p and TAGLN miRNA-mRNA pair involving in calcified aortic valve disease. Journal of physiology and biochemistry, 78(4), 819–831. |
[61] | Tu, M., Li, Y., Zeng, C., Deng, Z., Gao, S., Xiao, W., Luo, W., Jiang, W., Li, L., & Lei, G. (2016). MicroRNA-127-5p regulates osteopontin expression and osteopontin-mediated proliferation of human chondrocytes. Scientific reports, 6, 25032. |
[62] | Liu, N., Zhang, Z., Li, L., Shen, X., Sun, B., Wang, R., Zhong, H., Shi, Q., Wei, L., Zhang, Y., Wang, Y., Xu, C., Liu, Y., & Yuan, W. (2020). MicroRNA-181 regulates the development of Ossification of Posterior longitudinal ligament via Epigenetic Modulation by targeting PBX1. Theranostics, 10(17), 7492–7509. |