[1] | LHB luteinizing hormone beta polypeptide [Homo sapiens (human)] Gene ID: 3972, updated on 21-Apr-2019 Retrieved from https://www.ncbi.nlm.nih.gov/gene/3972. |
[2] | LUTEINIZING HORMONE, BETA POLYPEPTIDE; LHB. Retrieved from https://omim.org/entry/152780. |
[3] | Gene: LHB ENSG00000104826 Retrieved from https://0x9.me/9OrqY. |
[4] | UniproktB - P01229 (LSHB_HUMAN) Retrieved from https://www.uniprot.org/uniprot/P01229. |
[5] | Mariani Carla Prudente Batista, Eliane de Fatima Duarte, Michele Delarmelina dos Reis Borba, Emilie Zingler, João Mangussi-Gomes, Beatriz Taynara Araújo dos Santos, Olivia Laquis de Moraes, Sylvia Asaka Yamashita Hayashida, Edmund C. Baracat, Francisco de Assis da Rocha Neves, Gustavo Arantes Rosa Maciel, Tania Aparecida Sartori Sanchez Bachega, Gustavo Barcelos Barra, Adriana Lofrano-Porto, Trp28Arg/Ile35Thr LHB gene variants are associated with elevated testosterone levels in women with polycystic ovary syndrome, Gene, Volume 550, Issue 1, 2014, Pages 68-73. |
[6] | Tsilchorozidou, T., Overton, C. and Conway, G. (2004). The pathophysiology of polycystic ovary syndrome. Clinical Endocrinology, 60: 1-17. doi:10.1046/j.1365-2265.2003.01842.x. |
[7] | Hyejin Lee, Jee-Young Oh, Yeon-Ah Sung, Hyewon Chung, Hyung-Lae Kim, Gwang Sub Kim, Yoon Shin Cho, Jin Taek Kim; Genome-wide association study identified new susceptibility loci for polycystic ovary syndrome, Human Reproduction, Volume 30, Issue 3, 1 March 2015, Pages 723–731, https://doi.org/10.1093/humrep/deu352. |
[8] | Stein I, Leventhal M (1935). Amenorrhoea associated with bilateral polycystic ovaries. Am J Obstet Gynecol 29: 181–185. |
[9] | Prapas N, Karkanaki A, Prapas I, Kalogiannidis I, Katsikis I, and Panidis D, (2009). Genetics. pathophysyiology. H21IP6POKRATIA, 13, 4: 216-223. |
[10] | Zi-Jiang Chen, Han Zhao, Lin He, Yuhua Shi, Yingying Qin, Yongyong Shi, Zhiqiang Li, Li You, Junli Zhao, Jiayin Liu, Xiaoyan Liang, Xiaoming Zhao, Junzhao Zhao, Yingpu Sun, Bo Zhang, Hong Jiang, Dongni Zhao, Yuehong Bian, Xuan Gao, Ling Geng, Yiran Li, Dongyi Zhu, Xiuqin Sun, Jin-e Xu, Cuifang Hao, Chun-e Ren, Yajie Zhang, Shiling Chen, Wei Zhang, Aijun Yang, Junhao Yan, Yuan Li, Jinlong Ma and Yueran Zhao, (2011). Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21 and 9q33.3., Nat Genet, 43(1): p. 55-9. |
[11] | O. Valkenburg A.G. Uitterlinden D. Piersma, A. Hofman, A.P.N. Themmen, F.H. de Jong, B.C.J.M. Fauser, and J.S.E. Laven, (2009). Genetic polymorphisms of GnRH and gonadotrophic hormone receptors affect the phenotype of polycystic ovary syndromeHuman Reproduction, Vol.24, No.8 pp. 2014–2022. |
[12] | Yongyong Shi, Han Zhao, Yuhua Shi, Yunxia Cao, Dongzi Yang, Zhiqiang Li, Bo Zhang, Xiaoyan Liang, Tao Li, Jianhua Chen, Jiawei Shen, Junzhao Zhao, Li You, Xuan Gao, Dongyi Zhu, Xiaoming Zhao, Ying Yan, Yingying Qin, Wenjin Li, Junhao Yan, Qingzhong Wang, Junli Zhao, Ling, Jinlong Ma, Yueran Zhao, Guang He, Aiping Zhang, Shuhua Zou, Aijun Yang, Jiayin Liu, Weidong Li, Baojie Li, Chunling Wan, Ying Qin, Juanzi Shi, Jing Yang, Hong Jiang, Jin-e Xu, Xiujuan Qi, Yun Sun, Yajie Zhang, Cuifang Hao, Xiuqing Ju, Dongni Zhao, Chun-e Ren, Xiuqing Li, Wei Zhang, Yiwen Zhang, Jiangtao Zhang, Di Wu, Changming Zhang, Lin He and Zi-Jiang Chen., (2012). Genome-wide association study identifies eight new risk loci for polycystic ovary syndrome. Nat Genet, 44:(9). |
[13] | Ye Tian, Han Zhao, Haitao Chen, Yingqian Peng, Linlin Cui, Yanzhi Du, Zhao Wang, Jianfeng Xu, and Zi-Jiang Chen, (2016). Variants in FSHB Are Associated With Polycystic Ovary Syndrome and Luteinizing Hormone Level in Han Chinese Women. J Clin Endocrinol Metab 101: 2178–2184. |
[14] | FJ Broekmans, EAH Knauff, et al. a PCOS according to the Rotterdam consensus criteria: change in prevalence among WHO-II anovulation and association with metabolic factors BJOG 2006; 113:1210–1217. |
[15] | Anderson Sanches de Melo, Sabrine Vilan Dias, Ricardo de Carvalho Cavalli, Viviane Cunha Cardoso, Heloisa Bettiol, Marco Antonio Barbieri, Rui Alberto Ferriani and Carolina Sales Vieira. (2015). Pathogenesis of polycystic ovary syndrome: multifactorial assessment from the foetal stage to menopause Reproduction.150 R11–R24. |
[16] | The Rotterdam ESHRE/ASRM-Sponsored PCOS consensus workshop group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod 2004; 19:41–7. |
[17] | Azziz R. Diagnostic criteria for polycystic ovary syndrome: a reappraisal. Fertil Steril 2005;83:1343–6. |
[18] | Ha L, Shi Y, Zhao J, Li T, Chen Z-J (2015). Association Study between Polycystic Ovarian Syndrome and the Susceptibility Genes Polymorphisms in Hui Chinese Women. PLoS ONE 10(5): e0126505. doi:10.1371/journal.pone.0126505. |
[19] | El‐Shal, A. S., Zidan, H. E., Rashad, N. M., Abdelaziz, A. M. and Harira, M. M. (2016). Association between genes encoding components of the Leutinizing hormone/ Luteinizing hormone–choriogonadotrophin receptor pathway and polycystic ovary syndrome in Egyptian women. IUBMB Life, 68: 23-36. |
[20] | Bassiouny YA1, Rabie WA, Hassan AA, Darwish RK. Association of the luteinizing hormone/choriogonadotropin receptor gene polymorphism with polycystic ovary syndrome. Gynecol Endocrinol. 2014 Jun; 30(6): 428-30. |
[21] | Shilpi Dasgupta, P.V.S. Sirisha, K. Neelaveni, K. Anuradha, G. Sudhakar, B. Mohan Reddy, Role of luteinizing hormone β-subunit gene variants among South Indian women with polycystic ovary syndrome, Gene,Volume 494, Issue 1, 2012, Pages 51-56. |
[22] | Thathapudi, S., Kodati, V., Erukkambattu, J., Addepally, U., & Qurratulain, H. (2015). Association of luteinizing hormone chorionic gonadotropin receptor gene polymorphism (rs2293275) with polycystic ovarian syndrome. Genetic testing and molecular biomarkers, 19(3), 128–132. doi:10.1089/gtmb.2014.0249. |
[23] | Ramanujam, L. N., Liao, W. X., Roy, A. C., Loganath, A., Goh, H. H. and Ng, S. C. (1999). Association of molecular variants of luteinizing hormone with menstrual disorders. Clinical Endocrinology, 51: 243-246. |
[24] | L. Skrgatic, D. Pavicic Baldani, J.Z. Cerne, P. Ferk, K. Gersak, CAG repeat polymorphism in androgen receptor gene is not directly associated with polycystic ovary syndrome but influences serum testosterone levels.The Journal of Steroid Biochemistry and Molecular Biology, Volume 128, Issues 3–5, 2012.Pages 107-112. |
[25] | Liu N1, Ma Y, Wang S, Zhang X, Zhang Q, Zhang X, Fu L, Qiao J. Association of the genetic variants of luteinizing hormone, luteinizing hormone receptor and polycystic ovary syndrome. Reprod Biol Endocrinol. 2012 Apr 30;10:36. |
[26] | Alviggi, C., Pettersson, K., Longobardi, S., Andersen, C. Y., Conforti, A., De Rosa, P., … Humaidan, P. (2013). A common polymorphic allele of the LH beta-subunit gene is associated with higher exogenous FSH consumption during controlled ovarian stimulation for assisted reproductive technology. Reproductive biology and endocrinology: RB&E, 11, 51. doi:10.1186/1477-7827-11-51. |
[27] | Altman RB (2012). Introduction to Translational Bioinformatics Collection. PLoS Comput Biol 8(12): e1002796. doi:10.1371/journal.pcbi.1002796. |
[28] | Kann, M. G. (2009). Advances in translational bioinformatics: computational approaches for the hunting of disease genes BRIEFINGS IN BIOINFORMATICS. VOL 11. NO 1. 96 -110. |
[29] | Sirintrapun, S.J., et al., Translational Bioinformatics and Clinical Research (Biomedical) Informatics. Clin Lab Med, 2016. 36(1): p. 153-81. |
[30] | Kennelly, P.J. and Rodwell W V., Bioinformatics & Computational Biology, 30th ed., McGraw-Hill Education. 2015. |
[31] | Jessica D. Tenenbaum, Translational Bioinformatics: Past, Present, and Future, Genomics, Proteomics & Bioinformatics,Volume 14, Issue 1, 2016. |
[32] | Sim, N. L., Kumar, P., Hu, J., Henikoff, S., Schneider, G., & Ng, P. C. (2012). SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic acids research, 40(Web Server issue), W452-7. |
[33] | Adzhubei, I., Jordan, D. M., & Sunyaev, S. R. (2013). Predicting the functional effect of human missense mutations using PolyPhen-2. Current protocols in human genetics, Chapter 7, Unit 7.20. |
[34] | Choi, Y., & Chan, A. P. (2015). PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics (Oxford, England), 31(16), 2745-7. |
[35] | Bromberg, Y. and B. Rost, SNAP: predict the effect of non-synonymous polymorphisms on function. Nucleic Acids Res, 2007. 35(11): p. 3823-35. |
[36] | Wu, J., & Jiang, R. (2013). Prediction of deleterious nonsynonymous single-nucleotide polymorphism for human diseases. TheScientificWorldJournal, 2013, 675851. |
[37] | Desai, M. and J.B. Chauhan, Predicting the functional and structural consequences of nsSNPs in human methionine synthase gene using computational tools. 2019: p. 1-13. |
[38] | López-Ferrando, V., Gazzo, A., de la Cruz, X., Orozco, M., & Gelpí, J. L. (2017). PMut: a web-based tool for the annotation of pathological variants on proteins, 2017 update. Nucleic acids research, 45(W1), W222-W228. |
[39] | Capriotti, E., Fariselli, P., & Casadio, R. (2005). I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic acids research, 33(Web Server issue), W306-10. |
[40] | Venselaar, H., et al., Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces. BMC Bioinformatics, 2010. 11: p. 548. |
[41] | Wang, S., Li, W., Liu, S., & Xu, J. (2016). RaptorX-Property: a web server for protein structure property prediction. Nucleic acids research, 44(W1), W430-5. |
[42] | Bhattacharya, A., Ziebarth, J. D., & Cui, Y. (2013). PolymiRTS Database 3.0: linking polymorphisms in microRNAs and their target sites with human diseases and biological pathways. Nucleic acids research, 42 (Database issue), D86-91. |
[43] | Franz, M., Rodriguez, H., Lopes, C., Zuberi, K., Montojo, J., Bader, G. D., & Morris, Q. (2018). GeneMANIA update 2018. Nucleic acids research, 46(W1), W60-W64. |
[44] | LLOYD AXELROD, ROBERT M NEER, BERNARD KLIMAN, Hypogonadism in a Male with Immunologically Active, Biologically Inactive Luteinizing Hormone: An Exception to a Venerable Rule, The Journal of Clinical Endocrinology & Metabolism, Volume 48, Issue 2, 1 February 1979, Pages 279–287, https://doi.org/10.1210/jcem-48-2-279. |
[45] | Weiss, Jeffrey, Axelrod, Lloyd, Whitcomb, Randall W. Harris, Philip E. Crowley, William F. Jameson, J. Larry. (1992). Hypogonadism Caused by a Single Amino Acid Substitution in the β Subunit of Luteinizing Hormone. New England Journal of Medicine VI - 326. |
[46] | Hernan Valdes-Socin, Roberto Salvi, Albert Thiry, Adrian F. Daly, François P. Pralong, Rolf Gaillard, Albert Beckers, Testicular Effects of Isolated Luteinizing Hormone Deficiency and Reversal by Long-Term Human Chorionic Gonadotropin Treatment, The Journal of Clinical Endocrinology & Metabolism, Volume 94, Issue 1, 1 January 2009, Pages 3–4. |
[47] | Valdes-Socin, Hernán Salvi, Roberto Daly, Adrian Gaillard, Rolf C.- Quatresooz, Pascale Tebeu, Pierre-Marie Pralong, François P. Beckers, Albert (2004). Hypogonadism in a Patient with a Mutation in the Luteinizing Hormone Beta-Subunit Gene. New England Journal of Medicine VI - 351 2619-2625. |