[1] | Kristiina Rull, Marina Grigorova, Aivar Ehrenberg, Pille Vaas, Aire Sekavin, Diana Nõmmemees, Mart Adler, Ele Hanson, Peeter Juhanson, and Maris Laan, 2018, FSHB −211 G>T is a major genetic modulator of reproductive physiology and health in childbearing age women. Human Reproduction. pp. 1–13. |
[2] | Grigorova, M., Margus Punab, Kristo Ausmees, and Maris Laan., 2008, FSHB promoter polymorphism within an evolutionary conserved element is associated with serum FSH level in men. Hum Reprod, 23(9): p. 2160-6. |
[3] | R. Azziz, D.A. Dumesic, and M.O. Goodarzi, 2011, Polycystic ovary syndrome: an ancient disorder? Fertil. Steril. 95 (5) 1544–1548. |
[4] | R. Saxena, N.A. Georgopoulos, T.J. Braaten, A.C. Bjonnes, V. Koika, D. Panidis, and C.K. Welt. 2015. Han Chinese polycystic ovary syndrome risk variants in women of European ancestry: relationship to FSH levels and glucose tolerance, Human Reproduction, Vol.30, No.6 pp. 1454–1459. |
[5] | Wassim Y. Almawi, Bayan Hubail, Dana Z. Arekat, Suhaila M. Al-Farsi, Shadha K. Al-Kindi, Mona R. Arekat, Naeema Mahmood and Samira Madan. 2015. Leutinizing hormone/choriogonadotropin receptor and follicle stimulating hormone receptor gene variants in polycystic ovary syndrome, J Assist Reprod Genet 32:607–614. |
[6] | Anderson Sanches de Melo, Sabrine Vilan Dias, Ricardo de Carvalho Cavalli, Viviane Cunha Cardoso, Heloisa Bettiol, Marco Antonio Barbieri, Rui Alberto Ferriani and Carolina Sales Vieira. (2015). Pathogenesis of polycystic ovary syndrome: multifactorial assessment from the foetal stage to menopause Reproduction.150 R11–R24. |
[7] | Hyejin Lee, Jee-Young Oh, Yeon-Ah Sung, Hyewon Chung, Hyung-Lae Kim, Gwang Sub Kim, Yoon Shin Cho, Jin Taek Kim; Genome-wide association study identified new susceptibility loci for polycystic ovary syndrome, Human Reproduction, Volume 30, Issue 3, 1 March 2015, Pages 723–731, https://doi.org/10.1093/humrep/deu352. |
[8] | Prapas N, Karkanaki A, Prapas I, Kalogiannidis I, Katsikis I, and Panidis D, (2009). Genetics.pathophysyiology. H21IP6POKRATIA, 13, 4: 216-223. |
[9] | Zi-Jiang Chen, Han Zhao, Lin He, Yuhua Shi, Yingying Qin, Yongyong Shi, Zhiqiang Li, Li You, Junli Zhao, Jiayin Liu, Xiaoyan Liang, Xiaoming Zhao, Junzhao Zhao, Yingpu Sun, Bo Zhang, Hong Jiang, Dongni Zhao, Yuehong Bian, Xuan Gao, Ling Geng, Yiran Li, Dongyi Zhu, Xiuqin Sun, Jin-e Xu, Cuifang Hao, Chun-e Ren, Yajie Zhang, Shiling Chen, Wei Zhang, Aijun Yang, Junhao Yan, Yuan Li, Jinlong Ma and Yueran Zhao., 2011, Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21 and 9q33.3., Nat Genet, 43(1): p. 55-9. |
[10] | O. Valkenburg A.G. Uitterlinden D. Piersma, A. Hofman, A.P.N. Themmen, F.H. de Jong, B.C.J.M. Fauser, and J.S.E. Laven, 2009, Genetic polymorphisms of GnRH and gonadotrophic hormone receptors affect the phenotype of polycystic ovary syndrome Human Reproduction, Vol.24, No.8 pp. 2014–2022. |
[11] | Yongyong Shi, Han Zhao, Yuhua Shi, Yunxia Cao, Dongzi Yang, Zhiqiang Li, Bo Zhang, Xiaoyan Liang, Tao Li, Jianhua Chen, Jiawei Shen, Junzhao Zhao, Li You, Xuan Gao, Dongyi Zhu, Xiaoming Zhao, Ying Yan, Yingying Qin, Wenjin Li, Junhao Yan, Qingzhong Wang, Junli Zhao, Ling , Jinlong Ma, Yueran Zhao, Guang He, Aiping Zhang, Shuhua Zou, Aijun Yang, Jiayin Liu, Weidong Li, Baojie Li, Chunling Wan, Ying Qin, Juanzi Shi, Jing Yang, Hong Jiang, Jin-e Xu, Xiujuan Qi, Yun Sun, Yajie Zhang, Cuifang Hao, Xiuqing Ju, Dongni Zhao, Chun-e Ren, Xiuqing Li, Wei Zhang, Yiwen Zhang, Jiangtao Zhang, Di Wu, Changming Zhang, Lin He and Zi-Jiang Chen., 2012, Genome-wide association study identifies eight new risk loci for polycystic ovary syndrome., Nat Genet, 44:(9). |
[12] | Ye Tian, Han Zhao, Haitao Chen, Yingqian Peng, Linlin Cui, Yanzhi Du, Zhao Wang, Jianfeng Xu, and Zi-Jiang Chen, 2016, Variants in FSHB Are Associated With Polycystic Ovary Syndrome and Luteinizing Hormone Level in Han Chinese Women. J Clin Endocrinol Metab 101: 2178–2184. |
[13] | Priscilla Mutharasan, Eugene Galdones, Beatriz Pen alver Bernabe, Obed A. Garcia, Nadereh Jafari, Lonnie D. Shea, Teresa K. Woodruff, Richard S. Legro, Andrea Dunaif, and Margrit Urbanek., 2013, Evidence for Chromosome 2p16.3 Polycystic Ovary Syndrome Susceptibility Locus in Affected Women of European Ancestry J Clin Endocrinol Metab 98: E185–E190. |
[14] | Hayes, M.G., Margrit Urbanek, David A. Ehrmann, Loren L. Armstrong, Ji Young Lee, Ryan Sisk, Tugce Karaderi, Thomas M. Barber, Mark I. McCarthy, Stephen Franks, Cecilia M. Lindgren, Corrine K. Welt, Evanthia Diamanti-Kandarakis, Dimitrios Panidis, Mark O. Goodarzi, Ricardo Azziz, Yi ZhangRoland G. James, Michael Olivier, Ahmed H. Kissebah, Reproductive Medicine Network, Elisabet Stener-Victorin, Richard S. Legro, and , Andrea Dunaif. 2015, Genome-wide association of polycystic ovary syndrome implicates alterations in gonadotropin secretion in European ancestry populations. Nat Commun, 6: p. 7502. |
[15] | Jan M. McAllister, Richard S. Legro, Bhavi P. Modi, and Jerome F. Strauss III,. 2015, Functional Genomics of PCOS: From GWAS to Molecular Mechanisms. Trends Endocrinol Metab, 26(3): 118–124. |
[16] | Welt, C.K. and J.M. Duran, 2014, Genetics of polycystic ovary syndrome. Semin Reprod Med. 32(3): p. 177-82. |
[17] | Altman RB (2012). Introduction to Translational Bioinformatics Collection. PLoS Comput Biol 8(12): e1002796. doi:10.1371/journal.pcbi.1002796. |
[18] | Kann, M. G. 2009, Advances in translational bioinformatics: computational approaches for the hunting of disease genes BRIEFINGS IN BIOINFORMATICS. VOL 11. NO 1. 96 -110. |
[19] | Sirintrapun, S.J., et al., Translational Bioinformatics and Clinical Research (Biomedical) Informatics. Clin Lab Med, 2016. 36(1): p. 153-81. |
[20] | Kennelly, P.J. and Rodwell W V., Bioinformatics & Computational Biology, 30th ed., McGraw-Hill Education. 2015. |
[21] | Jessica D. Tenenbaum, Translational Bioinformatics: Past, Present, and Future, Genomics, Proteomics & Bioinformatics, Volume 14, Issue 1, 2016. |
[22] | Sim, N. L., Kumar, P., Hu, J., Henikoff, S., Schneider, G., & Ng, P. C. (2012). SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic acids research, 40(Web Server issue), W452-7. |
[23] | Adzhubei, I., Jordan, D. M., & Sunyaev, S. R. (2013). Predicting the functional effect of human missense mutations using PolyPhen-2. Current protocols in human genetics, Chapter 7, Unit7.20. |
[24] | Choi, Y., & Chan, A. P. (2015). PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics (Oxford, England), 31(16), 2745-7. |
[25] | Bromberg, Y. and B. Rost, SNAP: predict the effect of non-synonymous polymorphisms on function. Nucleic Acids Res, 2007. 35(11): p. 3823-35. |
[26] | Wu, J., & Jiang, R. (2013). Prediction of deleterious nonsynonymous single-nucleotide polymorphism for human diseases. The Scientific World Journal, 2013, 675851. |
[27] | Desai, M. and J.B. Chauhan, Predicting the functional and structural consequences of nsSNPs in human methionine synthase gene using computational tools. 2019: p. 1-13. |
[28] | López-Ferrando, V., Gazzo, A., de la Cruz, X., Orozco, M., & Gelpí, J. L. (2017). PMut: a web-based tool for the annotation of pathological variants on proteins, 2017 update. Nucleic acids research, 45(W1), W222-W228. |
[29] | Capriotti, E., Fariselli, P., & Casadio, R. (2005). I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic acids research, 33(Web Server issue), W306-10. |
[30] | Venselaar, H., et al., Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces. BMC Bioinformatics, 2010. 11: p. 548. |
[31] | Wang, S., Li, W., Liu, S., & Xu, J. (2016). RaptorX-Property: a web server for protein structure property prediction. Nucleic acids research, 44(W1), W430-5. |
[32] | Bhattacharya, A., Ziebarth, J. D., & Cui, Y. (2013). PolymiRTS Database 3.0: linking polymorphisms in microRNAs and their target sites with human diseases and biological pathways. Nucleic acids research, 42 (Database issue), D86-91. |
[33] | Franz, M., Rodriguez, H., Lopes, C., Zuberi, K., Montojo, J., Bader, G. D., & Morris, Q. (2018). GeneMANIA update 2018. Nucleic acids research, 46(W1), W60-W64. |
[34] | Nagirnaja, L., et al., Genomics and genetics of gonadotropin beta-subunit genes: Unique FSHB and duplicated LHB/CGB loci. Mol Cell Endocrinol, 2010. 329(1-2): p. 4-16. |
[35] | Lindstedt, G., et al., Follitropin (FSH) deficiency in an infertile male due to FSHbeta gene mutation. A syndrome of normal puberty and virilization but underdeveloped testicles with azoospermia, low FSH but high lutropin and normal serum testosterone concentrations. Clin Chem Lab Med, 1998. 36(8): p. 663-5. |
[36] | Layman, L.C., et al., Delayed puberty and hypogonadism caused by mutations in the follicle-stimulating hormone beta-subunit gene. N Engl J Med, 1997. 337(9): p. 607-11. |