[1] | Michalak M, Corbett EF, Mesaeli N, Nakamura K, Opas M. Calreticulin: one protein, one gene, many functions. The Biochemical journal. 1999; 344 Pt 2:281-92. |
[2] | Michalak M, Robert Parker JM, Opas M. Ca2+ signaling and calcium binding chaperones of the endoplasmic reticulum. Cell calcium. 2002; 32(5-6): 269-78. |
[3] | K. Burns BD, E. A. Atkinson et al. Modulation of gene expression by calreticulin binding to the glucocorticoid receptor. Nature. 1994; 367(6462): 476–80. |
[4] | Lu CY WW, Lee H. Functional Role of Calreticulin in cancer biology. Biomedical Research Journal. 2015; 2015 (526524): 1-9. |
[5] | Varricchio L MA. Calreticulin in Myeloproliferative neoplasms: The other side of the Alice Mirro. European Medical Journal Haematology. 2014; 1:114-22. |
[6] | Machado-Neto JA dMCP, Traina F. CALR (calreticulin). Atlas Genet Cytogenet Oncol Haematol in press. 2016. |
[7] | Chachoua I, Pecquet C, El-Khoury M, Nivarthi H, Albu RI, Marty C, et al. Thrombopoietin receptor activation by myeloproliferative neoplasm associated calreticulin mutants. Blood. 2016; 127(10): 1325-35. |
[8] | Araki M, Yang Y, Masubuchi N, Hironaka Y, Takei H, Morishita S, et al. Activation of the thrombopoietin receptor by mutant calreticulin in CALR-mutant myeloproliferative neoplasms. Blood. 2016; 127(10): 1307-16. |
[9] | Ghiran I, Klickstein LB, Nicholson-Weller A. Calreticulin is at the surface of circulating neutrophils and uses CD59 as an adaptor molecule. J Biol Chem. 2003; 278(23): 21024-31. |
[10] | Qui Y MM. Transcription Control of the Calreticulin gene in health and disease. The International Journal of Biochemistry and Cell Biology. 2009; 41 (3): 531-8. |
[11] | M. Villagomez ES, A. Podcheko, T. Feng, S. Papp, and M. Opas. Calreticulin and focal-contact-dependent adhesion. Biochemistry and Cell Biology. 2009; 87(4): 545–56. |
[12] | H. Totary-Jain TN-M, Y. Riahi, N. Kaiser, J. Eckel, and S. Sasson. Calreticulin destabilizes glucose transporter-1 mRNA in vascular endothelial and smooth muscle cells under high-glucose conditions. Circulation Research. 2005; 97(10): 1001–8. |
[13] | W.-F. Chiang T-ZH, T.-C. Hour et al. Calreticulin, an endoplasmic reticulum-resident protein, is highly expressed and essential for cell proliferation and migration in oral squamous cell carcinoma. Oral Oncology. 2013; 9(6): 534–41. |
[14] | K. Chahed MK, L. Ehret-Sabatier et al. Expression of fibrinogen E-fragment and fibrin E-fragment is inhibited in the human infiltrating ductal carcinoma of the breast: the two-dimensional electrophoresis and MALDI-TOF-mass spectrometry analyses. International Journal of Oncology. 2005; 27(5): 1425–31. |
[15] | Milone MR, Pucci B, Colangelo T, Lombardi R, Iannelli F, Colantuoni V, et al. Proteomic characterization of peroxisome proliferator‐activated receptor‐γ (PPARγ) overexpressing or silenced colorectal cancer cells unveils a novel protein network associated with an aggressive phenotype. Molecular Oncology. 2016; 10(8): 1344-62. |
[16] | M. Alur MMN, S. E. Eggener et al. Suppressive roles of calreticulin in prostate cancer growth and metastasis. The American Journal of Pathology. 2009; 175(2): 882–890. |
[17] | K. Hellman AAA, K. Schedvins, W. Steinberg, A.-C. Hellström, and G. Auer. Protein expression patterns in primary carcinoma of the vagina. British Journal of Cancer. 2004; 91 (2): 319–326. |
[18] | O. Vaksman BD, C. Tropé, and R. Reich. Calreticulin expression is reduced in high-grade ovarian serous carcinoma effusions compared with primary tumors and solid metastases. Human Pathology. 2013; 44 (12): 2677–2683. |
[19] | J. Nangalia CEM, E. J. Baxter et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. The New England Journal of Medicine. 2013; 369(25): 2391–2405. |
[20] | T. Klampfl HG, A. S. Harutyunyan et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. The New England Journal of Medicine. 2013; 369(25): 2379–2390. |
[21] | Lavi N. Calreticulin Mutations in Myeloproliferative Neoplasms. Rambam Maimonides Medical Journal. 2014; 5(4): e0035. |
[22] | Luo W YZ. Calreticulin (CALR) mutation in myeloproliferative neoplasms (MPNs). Stem Cell Investigation 201. 2015; 2: 16. |
[23] | Helbling D, Mueller BU, Timchenko NA, Schardt J, Eyer M, Betts DR, et al. CBFB-SMMHC is correlated with increased calreticulin expression and suppresses the granulocytic differentiation factor CEBPA in AML with inv(16). Blood. 2005; 106(4): 1369-75. |
[24] | Hou HA, Kuo YY, Chou WC, Chen PH, Tien HF. Calreticulin mutation was rarely detected in patients with myelodysplastic syndrome. Leukemia. 2014; 28: 1555. |
[25] | Heuser M, Panagiota V, Koenecke C, Fehse B, Alchalby H, Badbaran A, et al. Low frequency of calreticulin mutations in MDS patients. Leukemia. 2014; 28: 1933. |
[26] | Eder-Azanza L, Navarro D, Aranaz P, Novo FJ, Cross NC, Vizmanos JL. Bioinformatic analyses of CALR mutations in myeloproliferative neoplasms support a role in signaling. Leukemia. 2014; 28(10): 2106-9. |
[27] | P.C. Ng SH. Predicting the effects of amino acid substitutions on protein function. Annu Rev Genomics Hum Genet. 2006;7 61-80. |
[28] | I.A. Adzhubei SS, L. Peshkin, V.E. Ramensky, A. Gerasimova, P. Bork, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010; 7: 248-9. |
[29] | Hoi Y and Chan AP. PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics. 2015; 31(16): 2745-2747. |
[30] | Hecht L, Wass J, Kelly L, Clevenger-Firley E, Dunn C. SNAP-Ed Steps to Health Inspires Third Graders to Eat Smart and Move More. Journal of Nutrition Education and Behavior. 2013; 45(6): 800-2. |
[31] | L. Bao MZ, Y. CuiNsSNPAnalyzer: identifying disease-associated nonsynonymous single nucleotide polymorphisms. Nucleic Acids Res. 2005; 33: W480-W4802. |
[32] | Orozco CF-CJLGLZIPXdlCM. PMUT: a web-based tool for the annotation of pathological mutations on proteins. Bioinformatics. 2005; 21(14): 3176–8. |
[33] | Capriotti E CRaCR. Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information. Bioinformatics. 2006; 22: 2729-34. |
[34] | E. Capriotti PF, R. CasadioI-Mutant 2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res: 2005; 33: W306-W310. |
[35] | Venselaar H, Te Beek TA, Kuipers RK, Hekkelman ML, Vriend G. Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces. BMC bioinformatics. 2010; 11: 548. |
[36] | Li B, Krishnan VG, Mort ME, Xin F, Kamati KK, Cooper DN, et al. Automated inference of molecular mechanisms of disease from amino acid substitutions. Bioinformatics. 2009; 25(21): 2744-50. |
[37] | Mering V. STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res 2005; 33(Suppl. 1): D433-D7. |
[38] | Kanehisa, Minoru and Susumu Goto. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic acids research. 1999; 27 (1): 29-34. |
[39] | Xu AJ ST. Mechanisms by which von Willebrand disease mutations destabilize the A2 domain. J Biol Chem 2013; 288: 6317–24. |
[40] | Moreno A, Palacios A, Orgaz JL, Jimenez B, Blanco FJ, Palmero I. Functional impact of cancer-associated mutations in the tumor suppressor protein ING4. Carcinogenesis. 2010; 31(11): 1932-8. |
[41] | Witham S, Takano K, Schwartz C, Alexov E. A Missense Mutation in CLIC2 Associated with Intellectual Disability is Predicted by In Silico Modeling to Affect Protein Stability and Dynamics. Proteins. 2011; 79(8): 2444-54. |
[42] | Agoston AT, Argani P, Yegnasubramanian S, De Marzo AM, Ansari-Lari MA, Hicks JL, et al. Increased Protein Stability Causes DNA Methyltransferase 1 Dysregulation in Breast Cancer. Journal of Biological Chemistry. 2005; 280(18): 18302-10. |
[43] | Al-Kharashi LA, Al-Mohanna FH, Tulbah A, Aboussekhra A. The DNA methyl-transferase protein DNMT1 enhances tumor-promoting properties of breast stromal fibroblasts. Oncotarget. 2018; 9(2): 2329-43. |
[44] | Anwar SL, Krech T, Hasemeier B, Schipper E, Schweitzer N, Vogel A, et al. Loss of DNA methylation at imprinted loci is a frequent event in hepatocellular carcinoma and identifies patients with shortened survival. Clinical Epigenetics. 2015; 7(1): 110. |
[45] | Ashktorab H, Daremipouran M, Goel A, Varma S, Leavitt R, Sun X, et al. DNA methylome profiling identifies novel methylated genes in African American patients with colorectal neoplasia. Epigenetics. 2014; 9(4): 503-12. |
[46] | Cornfold PA, Dodson AR, Parsons KF, Desmond AD, Woolfenden A, Fordham M, et al. Heat-shock protein expression independently predicts clinical outcome in prostate cancer. Cancer Res. 2000; 60: 7099-7105. |
[47] | Park KW, Eun Kim G, Morales R, Moda F, Moreno Gonzalez I, Concha-Marambio L, et al. The Endoplasmic Reticulum Chaperone GRP78/BiP Modulates Prion Propagation in vitro and in vivo. Scientific Reports. 2017; 7. |
[48] | Gao H, Wang Y, Wegierski T, Skouloudaki K, Putz M, Fu X, et al. PRKCSH/80K-H, the protein mutated in polycystic liver disease, protects polycystin-2/TRPP2 against HERP-mediated degradation. Hum Mol Genet. 2010; 19(1): 16-24. |
[49] | Yabe T, Kawamura S, Sato M, Kashiwase K, Tanaka H, Ishikawa Y, et al. A subject with a novel type I bare lymphocyte syndrome has tapasin deficiency due to deletion of 4 exons by Alu-mediated recombination. Blood. 2002; 100(4): 1496-8. |
[50] | Bassani Borges J, Medeiros Bastos G, Almendros Afonso TK, da Silva Rodrigues E, Strelow Thurow H, Dominguez Crespo Hirata T, et al. Study of APOB mutations and familial hypercholesterolemia phenotypes. Atherosclerosis. 2016; 252: e43. |
[51] | Ansar M1 S-CR, Saqib MA, Zulfiqar F, Lee K, Ashraf NM, et al. Mutation of ATF6 causes autosomal recessive achromatopsia. Hum Genet. 2015; 34(9): 941-50. |
[52] | Wani MA, Haynes LD, Kim J, Bronson CL, Chaudhury C, Mohanty S, Waldmann TA, Robinson JM, Anderson CL. Familial hypercatabolic hypoproteinemia caused by deficiency of the neonatal Fc receptor, FcRn, due to a mutant beta2-microglobulin gene. Proc Natl Acad Sci USA. 2006; 103(13): 5084-5089. |