[1] | Kuno T, Tsukamoto T, Hara A, Tanaka T. (2012) Cancer chemoprevention through the induction of apoptosis by natural compounds. JBPC 3: 156-173. |
[2] | Fulda S. (2010) Modulation of Apoptosis by Natural Products for Cancer Therapy. Planta Med 76: 1075-1079. |
[3] | Fridman JS, Lowe SW. (2003) Control of apoptosis by p53. Oncogene 22:9030-9040. |
[4] | Vogelstein B, Lane D, Levine AJ. (2000) Surfing the p53 network. Nature 408:307-310. |
[5] | Vogelstein B, Sur S, Prives C. (2010) p53: The Most Frequently Altered Gene in Human Cancers. Nature Education 3: 6. |
[6] | Haupt S, Berger M, Goldberg Z, Haupt Y. (2003) Apoptosis-the p53 network. J Cell Sci 116: 4077-4085. |
[7] | Oliner JD, Kinzler KW, Meltzer PS, George DL, Vogelstein B. (1992) Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 358: 80-83. |
[8] | Momand J, Jung D, Wilczynski S, Niland J. (1998) The MDM2 gene amplification database. Nucleic Acids Res 26: 3453-3459. |
[9] | Cordon-Cardo C, Latres E, Drobnjak M, Oliva MR, Pollack D, et al. (1994) Molecular abnormalities of mdm2 and p53 genes in adult soft tissue sarcomas. Cancer Res 54: 794-799. |
[10] | Wang W, Hu Y. (2012) Small molecule agents targeting the p53-MDM2 pathway for cancer therapy. Med Res Rev 32: 1159-1196. |
[11] | Dickens MP, Fitzgerald R, Fischer PM. (2010) Small-molecule inhibitors of MDM2 as new anticancer therapeutics. Semin Cancer Biol 20:10-18. |
[12] | Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, et al. (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303:844-848. |
[13] | Issaeva N, Bozko P, Enge M, Protopopova M, Verhoef LG, et al. (2004) Small molecule RITA binds to p53, blocks p53-HDM2 interaction and activates p53 function in tumors. Nat Med 10:1321-1328. |
[14] | Tabernero, J, Dirix, L, Schoffski, P, Cervantes, A, Capdevila, J, et al. (2009) Phase I pharmacokinetic (PK) and pharmacodynamic (PD) study of HDM-2 antagonist JNJ-26854165 in patients with advanced refractory solid tumors. J Clin Oncol 27:3514. |
[15] | Kim MJ, Kim SH, Lim SJ. (2010) Comparison of the apoptosis-inducing capability of sulforaphane analogues in human colon cancer cells. Anticancer Res 30:3611-3619. |
[16] | Lamy E, Schroder J, Paulus S, Brenk P, Stahl T, et al. (2008) Antigenotoxic properties of Eruca sativa (rocket plant), erucin and erysolin in human hepatoma (HepG2) cells towards benzo(a)pyrene and their mode of action. Food Chem Toxicol 46: 2415-2421. |
[17] | Doudican NA, Bowling B, Orlow SJ. (2010) Enhancement of arsenic trioxide cytotoxicity by dietary isothiocyanates in human leukemic cells via a reactive oxygen species-dependent mechanism. Leuk Res 34:229-34. |
[18] | Arif JM, Siddiqui MH, Akhtar S, Al-Sagair OA. (2013) Exploitation of in silico potential in prediction, validation and elucidation of mechanism of anti-angiogenesis by novel compounds: Comparative correlation between wet lab and in silico data. Int J Bioinformatics Res Appl 9(4): 336-348. |
[19] | Akhtar S, Al-Sagair OA, Arif JM. (2011) Novel aglycones of steroidal glycoalkaloids as potent tyrosine kinase inhibitors: Role in VEGF and EGF receptors targeted angiogenesis. Lett Drug Design Discov 8: 205-215. |
[20] | Khan MS, Akhtar S, Al-Sagair OA, Arif JM. (2011) Protective Effect of Dietary Tocotrienols against Infection and Inflammation induced Hyperlipidemia: An In Vivo and In Silico Study. Phytother Res 25:1586-1595. |
[21] | Khan MS, Khan MK, Siddiqui MH, Arif JM. (2011) An in vivo and in silico approach to elucidate the tocotrienol-mediated fortification against infection and inflammation induced alterations in antioxidant defense system. Eur Rev Med Pharmacol Sci 15:916-30. |
[22] | Huey R, Morris GM, Olson AJ, Goodsell DS. (2007) Semiempirical free energy force field with charge-based desolvation. J Comp Chem 28: 1145-1152. |
[23] | Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, et al. (1998) Automated docking using Lamarckian genetic algorithm and an empirical binding free energy function. J Comp Chem 19: 1639-1662. |
[24] | Maple JR, Hwang MJ, Stockfisch TP, Dinur U, Waldman M, et al. (1994) Derivation of class II force fields: V. Quantum force field for amides, peptides, and related compounds. J Comp Chem 15: 162-182. |
[25] | Besler BH, Merz KM, Kollman PA. (1990) Atomic Charges Derived from Semiempirical Methods. J Comp Chem 11: 431-439. |
[26] | Weiner SJ, Kollman PA, Case DA, Singh UC, Ghio C, et al. (1984) A new force field for molecular mechanical simulation of nucleic acids and proteins. J Am Chem Soc 106: 765-784. |
[27] | Weiner SJ, Kollman PA, Nguyen DT, Case DA. (1986) An All Atom Force Field for Simulations of Proteins and Nucleic Acids. J Comp Chem 7: 230-252. |
[28] | Brooks BR, Brooks III CL, Mackerell AD, Nilsson L, Petrella RJ, et al. (2009) CHARMM: The Biomolecule simulation Program. J Comp Chem 30: 1545-1615. |
[29] | Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23: 3-25. |
[30] | Teague SJ, Davis AM, Leeson PD, Oprea T. (1999) The Design of Leadlike Combinatorial Libraries. Angew Chem 111: 3955-3957. |
[31] | Ghose AK, Viswanadhan VN, Wendoloski JJ. (1999) A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J Comb Chem 1: 55-68. |
[32] | Oprea TI. (2000) Property distribution of drug-related chemical databases. J Comput Aided Mol Des 14: 251-264. |
[33] | Selick HE, Beresford AP, Tarbit MH. (2002) The emerging importance of predictive ADME simulation in drug discovery. Drug Discov Today 7:109-116. |
[34] | Yamashita S, Furubayashi T, Kataoka M, Sakane T, Sezaki H, et al. (2000) Optimized conditions for prediction of intestinal drug permeability using Caco-2 cells. Eur J Pharm Sci 10:195-204. |
[35] | Yazdanian M, Glynn SL, Wright JL, Hawi A. (1998) Correlating partitioning and caco-2 cell permeability of structurally diverse small molecular weight compounds. Pharm Res 15: 1490-1494. |
[36] | Irvine JD, Takahashi L, Lockhart K, Cheong J, Tolan JW, et al. (1999) MDCK (Madin-Darby canine kidney) cells: A tool for membrane permeability screening. J Pharm Sci 88: 28-33. |
[37] | Zhao YH, Le J, Abraham MH, Hersey A, Eddershaw PJ, et al. (2001) Evaluation of human intestinal absorption data and subsequent derivation of a quantitative structure-activity relationship (QSAR) with the Abraham descriptors. J Pharm Sci 90: 749-784. |
[38] | Yee S. (1997) In vitro permeability across Caco-2 cells (colonic) can predict in vivo (small intestinal) absorption in man--fact or myth. Pharm Res 14: 763-766. |
[39] | Singh S, Singh J. (1993) Transdermal drug delivery by passive diffusion and iontophoresis: a review. Med Res Rev 13: 569-621. |
[40] | Ajay A, Bemis GW, Murcko MA. (1999) Designing libraries with CNS activity. J Med Chem 42: 4942-4951. |
[41] | Lobell M, Molnar L, Keseru GM. (2003) Recent advances in the prediction of blood-brain partitioning from molecular structure. J Pharm Sci 92: 360-370. |
[42] | Ma XL, Chen C, Yang J. (2005) Predictive model of blood-brain barrier penetration of organic compounds. Acta Pharmacol Sin 26:500-512. |
[43] | Ames BN, Gurney EG, Miller JA, Bartsch H. (1972) Carcinogens as frameshift mutagens: metabolites and derivatives of 2-acetylaminofluorene and other aromatic amine carcinogens. Proc Natl Acad Sci 69: 3128-3132. |
[44] | Momand J, Zam betti GP, Olson DC, George D, Levine AJ. (1992) The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 2: 1237-1245. |
[45] | Honda R, Yasuda H. (2000) Activity of MDM2, a ubiquitin ligase, toward p53 or itself is dependent on the RING finger domain of the ligase. Oncogene 2: 1473-1476. |
[46] | Fang S, Jensen JP, Ludwig RL, Vousden KH, Weissman AM. (2000) Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J Biol Chem 2: 8945-8951. |
[47] | Roth J, Dobbelstein M, Freedman DA, Shenk T, Levine AJ. (1998) Nucleo-cytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein. EMBO J 2: 554-564. |
[48] | Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, et al. (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303: 844-848. |
[49] | Michieli P, Chedid M, Lin D, Pierce JH, Mercer WE, et al. (1994) Induction of WAF1/CIP1 by a p53-independent pathway. Cancer Res 54: 3391-3395. |
[50] | el-Deiry WS, Harper JW, O’Connor PM. (1994) WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res 54:1169-1174. |
[51] | Gartel AL, Radhakrishnan SK. (2005) Lost in transcription: p21 repression, mechanisms and consequences. Cancer Res 65:3980-3985. |
[52] | Grana X, Reddy EP. (1995) Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs). Oncogene 11:211-219. |
[53] | Dai Y, Grant S. (2003) Cyclin-dependent kinase inhibitors. Curr Opin Pharmacol 3:362-370. |
[54] | Huwe A, Mazitschek R, Giannis A. (2003) Small molecules as inhibitors of cyclin-dependent kinases. Angew Chem Int Ed Engl 42:2122-2138. |
[55] | Kuwana T, Newmeyer DD. (2003) Bcl-2-family proteins and the role of mitochondria in apoptosis. Curr Opi Cell Bio 15:691-699. |
[56] | Cheng E, Wei MC, Weiler S, Flavell RA, Mak TW, et al. (2001) BCL-2, BCL-XL sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol Cell 8: 705-711. |
[57] | Uphof, JCT. (1968) Dictionary of Economic Plants; Verlag Von J. Cramer Publ.: New York, NY, USA. |
[58] | Balme F. (1978) Plantas Medicinais; Hemus Livraria Editora Limitada: São Paulo, Brazil. |
[59] | Yaniv Z., Schafferman D, Amar Z. (1998) Tradition, uses and biodiversity of rocket (Eruca sativa, Brassicaceae) in Israel. Econ. Bot 52: 394–400. |
[60] | Perry LM, Metzger J. (1978) Medicinal Plants of SE Asia: Attributed Properties and Uses; The MIT Press: Cambridge, London, UK; Massachusetts, USA 23–24p. |
[61] | El-Missiry MA, El Gindy AM. (2000) Amelioration of alloxan induced diabetes mellitus and oxidative stress in rats by oil of Eruca sativa seeds. Ann Nutr Metab 44: 97–100. |
[62] | Sarwar Alam M, Kaur G, Jabbar Z, Javed K, Athar M. (2007) Eruca sativa seeds possess antioxidant activity and exert a protective effect on mercuric chloride induced renal toxicity. Fd Chem Toxicol 45: 910–920. |
[63] | Alqasoumi S, Al-Sohaibani M, Al-Howiriny T, Al-Yahya M, Rafatullah S. (2009) Rocket "Eruca sativa": A salad herb with potential gastric anti-ulcer activity. World J Gastroenterol 15: 1958– 1965. |
[64] | Melchini A, Traka MH. (2010) Biological profile of erucin: a new promising anticancer agent from Cruciferous vegetables. Toxins (Basel) 2: 593-612. |
[65] | Al-Karrawi, M A. (2013) Interaction studies to evaluate 2-carboxyphenolate analogues as inhibitors of anti-apoptotic protein BCL-2. Bioinformation 9(9): 477-479. |