[1] | Mathkour H, Ahmad M. Genome sequence analysis: A Survey. J Computer Science 2009; 5(9): 651-660. |
[2] | Liu Y, Schmidt B, Maskell D L. DecGPU: distributed error correction on massively parallel graphics processing units using CUDA and MPI. BMC Bioinformatics 2011; 12:85 |
[3] | Medvedev P, Scott E, Kakaradov B, et al. Error correction of high-throughput sequencing datasets with non-uniform coverage. Bioinformatics 2011; 27: 137-141. |
[4] | Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol 2008; 26: 1135-1145. |
[5] | Hawkins R, Hon G, Ren B. Next-generation genomics: an integrative approach. Nat Rev Genet 2010, 11: 476-486. |
[6] | Yang X, Dorman K S, Aluru S. Reptile: representative tiling for short read error correction. Bioinformatics 2010; 26: 2526–2533. |
[7] | Sanger F, Nicklen S, Coulson A R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci 1977; 74: 5463–5467. |
[8] | Havlak P, Chen R, Durbin KJ, et al. The Atlas genome assembly system. Genome Res 2004; 14: 721-732. |
[9] | Batzoglou S, Jaffe DB, Stanley K, et al. ARACHNE: a whole-genome shotgun assembler. Genome Res 2002; 12: 177-189. |
[10] | Myers E W, Sutton G G, Delcher A L, et al. A whole-genome assembly of Drosophila. Science 2000; 287: 2196-2204. |
[11] | Huang X, Wang J, Aluru S, et al. PCAP: a whole-genome assembly program. Genome Res 2003; 13: 2164-2170. |
[12] | Kelley D, Schatz M, Salzberg S. Quake: quality-aware detection and correction of sequencing errors. Genome Biology 2010; 11: R116. |
[13] | Warren RL, Sutton GG, Jones SJ, et al. Assembling millions of short DNA sequences using SSAKE. Bioinformatics 2007; 23: 500-501. |
[14] | Dohm JC, Lottaz C, Borodina T, et al. SHARCGS: a fast and highly accurate short-read assembly algorithm for de novo genomic sequencing. Genome Res 2007; 17: 1697-1706. |
[15] | Jeck WR, Reinhardt JA, Baltrus DA, et al. Extending assembly of short DNA sequences to handle error. Bioinformatics 2007; 23: 2942-2944. |
[16] | Schmidt B, Sinha R, Beresford-Smith B, et al. A fast hybrid short read fragment assembly algorithm. Bioinformatics 2009; 25: 2279-2280. |
[17] | Pevzner P.A,Tang H,Waterman M S. An Eulerian path approach to DNA fragment assembly. Proc Natl Acad Sci 2001; 98: 9748–9753. |
[18] | Chaisson MJ, Pevzner PA. Short read fragment assembly of bacterial genomes. Genome Res 2008; 18: 324-330. |
[19] | Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008; 18:821-829. |
[20] | Butler J, MacCallum I, Kleber M, et al. ALLPATHS: de novo assembly of whole-genome shotgun microreads. Genome Res 2008; 18: 810-820. |
[21] | Simpson JT, Wong K, Jackman SD, et al. ABySS: a parallel assembler for short read sequence data. Genome Res 2009; 19: 1117-1123. |
[22] | Li H, Homer N. A survey of sequence alignment algorithms for next-generation sequencing. Brief Bioinformatics 2010; 11: 473–483. |
[23] | Tammi M.T, Arner E, Kindlund E, et al. Correcting errors in shotgun sequences. Nucleic Acids Res 2003; 31: 4663-4672. |
[24] | David A, Wheeler, Srinivasan M, et al. The complete genome of an individual by massively parallel DNA sequencing. Nature 2008; 452: 872–876. |
[25] | Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transforms. Bioinformatics 2010; 5: 589-595. |
[26] | Salmela L, Schroder J. Correcting errord in short reads by multiple alignments. Genome analysis 2011; 27:1455-1461. |
[27] | Zhao X, Palmer LE, Bolanos R, et al. Edar: an efficient error detection and removal algorithm for next generation sequencing data. J Comput Biol 2010; 17: 1549–1560. |
[28] | Chaisson M J, Brinza D, Pevzner P A. De novo fragment assembly with short mate-paired reads: Does the read length matter? Genome Res 2009; 19: 336–346. |
[29] | Shi H, Schmidt B, Liu W, et al. A parallel algorithm for error correction in high-throughput short-read data on CUDA-enabled graphics hardware. J Computing Biology 2009; 17: 603–615. |
[30] | Zhao Z, Yin J, Zhan Y, et al. PSAEC: An improved algorithm for short read error correction using partial suffix arrays. LNCS 2011; 6681: 220-232. |
[31] | Li R, Zhu H, Ruan J, et al.. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 2010; 20: 265-272. |
[32] | Bentley D R, Balasubramanian S, Swerdlow H P, et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 2008; 456:53–59. |
[33] | Alkan C, Sajjadian S b, Eichler E E. Limitation of next-generation genome sequence assembly. Nature 2011; 8: 61-65. |
[34] | Green P. Whole-genome disassembly. Proc Natl Acad Sci 2002; 99: 4143–4144. |
[35] | Schatz M C, Delcher A L, Salzberg S L. Assembly of large genomes using second-generation sequencing. Genome Res 2010; 20: 1165–1173. |
[36] | Meader S, Hillier L W, Locke D, et al. Genome assembly quality: assessment and improvement using the neutral indel model. Genome Res 2010; 20: 675–684. |
[37] | Li H, Ruan J, Durbin R. Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res 2008; 11: 1851-1858. |
[38] | Langmead B, Trapnell C, Pop M, et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009; 3:R25. |
[39] | Ning Z, Cox A J, Mullikin J C. SSAHA: a fast search method for large DNA databases. Genome Res 2001; 11: 1725–1729. |
[40] | Li R, Yu C, Li Y, et al. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 2009; 15: 1966-1967. |
[41] | Huang W, Marth G. EagleView: a genome assembly viewer for next-generation sequencing technologies. Genome Res 2008; 9: 1538-1543. |
[42] | Bao H, Guo H, Wang J. MapView: visualization of short reads alignment on a desktop computer. Bioinformatics 2009; 12: 1554-1555. |
[43] | Milne I, Bayer M, Cardle L, et al. Tablet next generation sequence assembly visualization. Bioinformatics 2010; 3: 401-402. |
[44] | IGV Software Home Page. http://www.broadinstitute.org/igv (last accessed on 22 August 2011). |
[45] | Li H, Handsaker B, Wysoker A, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009; 16: 2078-2079. |
[46] | Yang X, Aluru A, Dorman K S. Repeat-aware modeling and correction of short read errors. BMC Bioinformatics 2011; 12:S52. |
[47] | Chaisson M J, Pevzner P, Tang H. Fragment assembly with short reads. Bioinformatics 2004; 20: 2067–2074. |
[48] | Schroder J, Schroder H, Puglisi S J, et al. SHREC: a short-read error correction method. Bioinformatics 2009; 25: 2157–2163. |
[49] | Salmela L. Correction of sequencing errors in a mixed set of reads. Bioinformatics 2010; 26: 1284–1290. |
[50] | Cormen T H, Charles E L, Rivest R L, et al. Introduction to Algorithms 2nd Edition. McGrawHill Book Company 2001; pp. 505–509. |
[51] | David M, Dzamba M, Lister D, et al. SHRiMP2: Sensitivity yet practical short read mapping. Bioinformatics 2011; 27: 1011-1012 |
[52] | Ilie L, Fazayeli F, Ilie S. HiTEC: accurate error correction in high-throughput sequencing data. Bioinformatics 2011; 27: 295–302. |
[53] | Mori Y.: Short description of improved two-stage suffix sorting algorithm,http://homepage3.nifty.com/wpage/software/itssort.txt, (last accessed on 23 August 2011) |
[54] | Kao W C, Andrew H, Chan, Yun S S. ECHO: A reference-free short-read error correction algorithm. Genome Res 2011; 110:1181-1192. |
[55] | Pireddu, Leo S, Zanetti G. SEAL: a distributed short read mapping and duplicate removal tool. Sequence Analysis 2011; 27: 2159-2160. |
[56] | Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009; 25: 1754–1760. |
[57] | Dean,J. and Ghemawat,S. MapReduce: simplified data processing on large clusters. In OSDI ’04: 6th Symposium on Operating Systems Design and Impl., USENIX Association 2004. |