[1] | L.N. de Castro and J. Timmis.Artifical Immune Systems and Their Applications. Springer-Verlag, 1999 |
[2] | L. N. de Castro and J. Timmis, Artificial Immune Systems: A NewComputationalIntelligence Paradigm. London, U.K.: Springer-Verlag,2002. |
[3] | Y. Ishida, Immunity-Based Systems: A Design Perspective.eidelberg, Germany: Springer-Verlag, 2004. |
[4] | V. Cutello and G. Nicosia, “The clonal selection principle for in silicoand in vitro computing,” in Recent Developments in Biologically Inspired computing, L.N. de Castro and F. J. von Zuben, Eds. Hershey,PA: Idea Group Publishing, 2004. |
[5] | J. E. Hunt and D. E. Cooke, “Learning using an artificial immunesystem,” J. Netw. Comput.Appl., vol. 19, pp. 189–212, 1996. |
[6] | G. Nicosia, F. Castiglione, and S. Motta, “Pattern recognition by primaryand secondary response of an artificial immune system,” Theoryin Biosciences, vol. 120, no. 2, pp. 93–106, 2001. |
[7] | T. Fukuda and M. T. K. Mori, “Parallel search for multimodal functionoptimization with diversity and learning of immune algorithm,” inArtif.Immune Syst. Their Appl., D. Dasgupta, Ed. Berlin, Germany:Springer-Verlag, 1999. |
[8] | L. N. de Castro and F. J. V. Zuben, “Learning and optimization usingthe clonal selection principle,” IEEE Trans. Evol. Comput., vol. 6, pp.239–251, Jun. 2002. |
[9] | G. Nicosia, “Immune algorithms for optimization and protein structureprediction,” Ph.D. dissertation, Dept. Math. Comput.Sci., Univ.Catania, Catania, Italy, 2004. |
[10] | G. B. Bezerra, L. N. de Castro, and F. J. V. Zuben, “A hierachicalimmune network applied to gene expression data,” in Proc. 3rd Int.Conf. Artif. Immune Syst., G. Nicosia, V. Cutello, P. Bentley, and J.Timmis, Eds., Catania, Italy, pp. 14–27,2004. |
[11] | V. Cutello, G. Narzisi, and G. Nicosia, “A multi-objective evolutionaryapproach to the protein structure prediction problem,” J. Royal So. Interface,vol. 3, no. 6, pp. 139–151, Feb. 2006. |
[12] | S. Ichikawa,A. Ishiguro, S.Kuboshiki, and Y. Uchikawa, “Amethod ofgait coordination of hexapod robots using immune networks,” J. Artif.Life Robotics, vol. 2, pp. 19–23, 1998. |
[13] | S. Singh and S. Thayer, “Kilorobot search and rescue using animmunologicallyinspired approach,” in Distributed Autonomous Robotic Systems.Berlin, Germany: Springer-Verlag, , vol. 5,2002. |
[14] | L. Kesheng, Z. Jun, C. Xianbin, and W. Xufa, “An algorithm basedon immune principle adopted in controlling behavior of autonomousmobile robots,” Comput. Eng. Appl., vol. 5, pp. 30–32, 2000. |
[15] | D. Dasgupta, “An artificial immune system as a multiagent decisionsupport system,” in Proc. IEEE Int. Conf. Syst., Man, Cybern., SanDiego, CA, , pp. 3816–3820,1998. |
[16] | J. Kim and P. Bentley, “Towards an artificial immune system for networkintrusion detection: An investigation of clonal selection with negativeselection operator,” in Proc. IEEE Int. Congr. Evol.Comput.,Seoul, Korea, pp. 1244–1252, 2001. |
[17] | D. Dasgupta and F. A. Gonzalez, “An immunity-based techniqueto characterize intrusions in computer networks,” IEEE Trans. Evol.Comput., vol. 6, pp. 281–291, 2002. |
[18] | V. Cutello and G. Nicosia, “An immunological approach to combinatorialoptimization problems,” in Proc. 8th Ibero-American Conf. Artif.Intell., Seville, Spain, , pp. 361–370, 2002. |
[19] | V. Cutello, G. Nicosia, and M. Pavone, “A hybrid immune algorithmwith information gain for the graph coloring problem,” in Proc. LNCSon Genetic and Evol.Comput. Conf., Chicago, IL, vol. 2723,pp. 171–182, 2003. |
[20] | E. Hart and P. Ross, “The evolution and analysis of a potential antibodylibrary for use in job-shop scheduling,” in New Ideas in Optimization,D. Corne, M. Dorigo, and F. Glover, Eds. London, U.K.: McGraw-Hill, 1999. |
[21] | Zhao, X.: Advances on protein folding simulations based on the latticeHP models with natural computing. Appl. Soft Comput., 8, 2, 1029–1040,2008. |
[22] | Berenboym, I., Avigal, M.: Genetic algorithms with local search optimization for protein structure prediction problem. GECCO 2008, 1097–1098, 2008. |
[23] | Cotta, C.: Protein Structure Prediction Using Evolutionary Algorithms Hybridized with Backtracking. Artificial Neural Nets Problem Solving Methods, 7th International Work-Conference on Artificial and Natural Neural Networks, LNCS 2687, 321–328, 2003. |
[24] | Song, J., Cheng, J., Zheng, T., Mao, J.: A Novel Genetic Algorithm for HP Model Protein Folding. PDCAT ’05: Proceedings of the Sixth International onference on Parallel and Distributed Computing Applications and Technologies, IEEE Computer Society, 935–937, 2005. |
[25] | Unger, R., Moult, J.: Genetic algorithms for protein folding simulations. J. Molec. Biol., 231, 75–81, 1993. |
[26] | Shmygelska, A., Hernandez, R., Hoos, H.H.: An Ant Colony Algorithm for the 2D HP Protein Folding Problem. In Proc. of ANTS 2002, LNCS, 2463,p. 40-53, 2002. |
[27] | Krasnogor, N., Blackburnem, B., Hirst, J.D., Burke, E.K.: Multimeme algorithms for protein structure prediction. In 7th International Conference Parallel Problem Solving from Nature (PPSN), LNCS 2439, 769–778, 2002. |
[28] | Lesh, N., Mitzenmacher, M., Whitesides, S.: A complete and effective move set for simplified protein folding. RECOMB ’03: Proceedings of the seventh annual international conference on Research in computational molecular biology, ACM, 188–195, 2003. |
[29] | Hsu, H.P., Mehra, V., Nadler, W., Grassberger, P.: Growth algorithms for lattice heteropolymers at low temperatures, J. Chem. Phys., 118, 1, 444– 451, 2003. |
[30] | M. Dra˘zi´c, C. Lavor, N. Maculan and N. Mladenovi´c, A continuousvariable neighborhoodsearch heuristic for finding the three-dimensional structure of a molecule, European Journalof Operational Research, 185 , 1265–1273, 2008. |
[31] | D. J. Wales, H. A. Scheraga, Global optimization of clusters, crystals and biomolecules,Science, 285 , 1368–1372, 1999 |
[32] | A.Hedar, A.F. and T. Hassan ,"Gentic Algorithm and Tabu Searched Methods for Molecular 3D-Structure Predicition", Numerical Algebra Control and Optimization, Vol. 1, No. 1, pp. 191–209, 2011 |
[33] | C. Lavor and N. Maculan, A function to test methods applied to global minimization of potential energy of molecules, Numerical Algorithms, 35 , 287–300, 2004. |
[34] | V. Cutello, G. Niscosia, M. Pavone, and J. Timmis.An Immune Algorithm for Protein Structure Predictionon Lattice Models. IEEE T. Evol. Comput.,11(1), pp.101–117, 2007. |
[35] | W.E. Hart, S. Istrail. HP Benchmarks ww.cs.sandia.gov/tech_reports/compbio/tortilla-hp-benchmarks.html. |
[36] | Unger, R., Moult, J.: Genetic algorithms for protein folding simulations. J. Molec. Biol., 231, 75–81, 1993. |
[37] | Berenboym, I., Avigal, M.: Genetic algorithms with local search optimization for protein structure prediction problem. GECCO 2008, 1097–1098, 2008. |
[38] | R. Santana, P. Larra˜naga, and J. A. Lozano. Protein folding in simplified models with estimation of distribution algorithms. IEEE Transactions on Evolutionary Computation.Vol. 12.No. 4.pp. 418-438, 2008. |