American Journal of Bioinformatics Research
p-ISSN: 2167-6992 e-ISSN: 2167-6976
2012; 2(1): 21-26
doi:10.5923/j.bioinformatics.20120201.04
Muhammad Sardaraz1, Muhammad Tahir1, Ataul Aziz Ikram1, Hassan Bajwa2
1Department of Computing and Technology, Iqra University, Islamabad, Pakistan
2Department of Electrical Engineering, University of Bridgeport, USA
Correspondence to: Muhammad Sardaraz, Department of Computing and Technology, Iqra University, Islamabad, Pakistan.
Email: |
Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved.
Phylogenetics enables us to use various techniques to extract evolutionary relationships from sequence analysis. Most of the phylogenetic analysis techniques produce phylogenetic trees that represent relationship between any set of species or their evolutionary history. This article presents a comprehensive survey of the applications and the algorithms for inference of huge phylogenetic trees and also gives the reader an overview of the methods currently employed for the inference of phylogenetic trees. A comprehensive comparison of the methods and algorithms is presented in this paper.
Keywords: Survey, Phylogenetic Trees, Methods for Phylogenetics
Cite this paper: Muhammad Sardaraz, Muhammad Tahir, Ataul Aziz Ikram, Hassan Bajwa, Applications and Algorithms for Inference of Huge Phylogenetic Trees: a Review, American Journal of Bioinformatics Research, Vol. 2 No. 1, 2012, pp. 21-26. doi: 10.5923/j.bioinformatics.20120201.04.
|
|
[1] | M. Talianova, 2007, Survey of molecular phylogenetics: A review, Plant Soil Environ ,53(9), 413–416 |
[2] | M. Steel, 2005, Should phylogenetic models be trying to “fit an elephant”?, Trends Genet, 21(6), 307–309 |
[3] | BQ. Minh, LS..Vinh, A. Haeseler, and HA. Schmidt, 2005,pIQPNNI: parallel reconstruction of large maximum likelihood phylogenies., Bioinformatics ,21(19), 3794–3796 |
[4] | A. Stamatakis, T. Ludwig, and H. Meier, 2005,RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees, Bioinformatics , 21(4), 456–463 |
[5] | Z. Yang, 2007, PAML 4: phylogenetic analysis by maximum likelihood, Mol. Biol. Evol 24(8), 1586–1591 |
[6] | Matthews SJ, and Williams TL, 2010, MrsRF: an efficient MapReduce algorithm for analyzing large collections of evolutionary trees, Bioinformatics11 (Suppl): S15doi: 10.1186/ 1471-2105-11-S1-S15. |
[7] | Sanchez. R, Serra. F, Tarraga. J, Medina. I, Carbonell. J, Pulido.L, Maria. A, Capella-Gutierrez. S, Huerta-Cepas. J, Gabaldon. T, Dopazo. J, and Dopazo .H ,2011,Phylemon 2.0: a suite of web-tools for molecular evolution, phylogenetics, phylogenomics and hypotheses testing, Nucleic Acids Research 39: doi: 10.1093/nar/gkr408 |
[8] | Baxevanis. AD and Ouellette. BFF, Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins. John Wiley & Sons, Inc. Hoboken, New Jersey,1998 |
[9] | Sokal. RR, Michener. CD ,1958, A statistical method for evaluating systematic relationships, Sci. Bull, 38, 1409–1438 |
[10] | Saitou. N and Nei. M, 1987, The Neighbor-Joining method: A new method for reconstructing phylogenetic trees, Mol. Biol. Evol 4(4), 406–425. |
[11] | Stamatakis. A, “Distributed and Parallel Algorithms and Systems for Inference of Huge Phylogenetic Trees Based on the Maximum Likelihood Method” PhD thesis, TechnischeUniversitat, Munchen, Germany, 2004 |
[12] | Trystram. D and Zola. J, Grid Computing for Bioinformatis and Computational Biology, John Wiley & Sons, Inc., Hoboken, New Jersey, 2008 |
[13] | Edwards.A,and Cavalli-Sforza. LL, 1963, The reconstruction of evolution, Heredity, 18, 553 |
[14] | Cavalli-Sforza LL, and Edwards. A 1967, Phylogenetic analysis: Models and estimation procedures, Hum. Genet 19(3), 233–257 |
[15] | Huelsenbeck. J, Hillis. D, 1993, Success of phylogenetic methods in the four-taxon case, Syst. Biol, 42(3), 247–264 |
[16] | Huelsenbeck. J, 1995, Performance of phylogenetic methods in simulation, Syst. Biol 44(1), 17–48 |
[17] | Tiffani.L,and Bernard. M,2003, An Investigation of Phylogenetic Likelihood Methods, Proc. BIBE03,79-86 |
[18] | Swofford. D, PAUP∗:Phylogenetic analysis using parsimony (and other methods), Sinauer Associates, Sunderland, MA, 1996 |
[19] | Olson. G, Matsuda. H, Hagstrom. R andOverbeek. R, 1994,fastDNAml: A tool for construction of phylogenetic trees of dna sequences using maximum likelihood, ComputApplBiosci 10(1), 41–48. |
[20] | Stewart. CA. Hart. D, Berry. DK., Olsen. GJ, Wernert. EA and Fischer. W, 2001, Parallel implementation and performance of fastDNAml a program for maximum likelihood phylogenetic inference, Procs of SC, 32 |
[21] | Huelsenbeck. J andRonquist. F 2001, MrBayes:Bayesian inference of phylogenetic trees, Bioinformatics 17(8), 754–755. |
[22] | Geyer. J 1991, Markov chain Monte Carlo maximum likelihood, Proc of the 23rd Symposium on the Interface, 156–163. |
[23] | Schmidt. HA, Strimmer. K, Vingron. M and Haeseler. A, 2002, Tree-puzzle: maximum likelihood phylogenetic analysis using quartets and parallel computing, Bioinformatics 18(3), 502–504. |
[24] | Guindon.S,andGascuel. O. 2003,A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood, Syst. Biol 52(5), 696–704. |
[25] | Felsenstein. J, 1989, PHYLIP - Phylogeny Inference Package (Version 3.2), Cladistics 5, 164–166. |
[26] | Vinh. LS and Haeseler. A, 2004, IQPNNI: Moving fast through tree space and stopping in time, Mol. Biol. Evol, 21(8), 1565–1571. |
[27] | Gascuel. O, 1997, BIONJ: An improved version of the NJ algorithm based on a simple model of sequence data, Mol. Biol. Evol, 14(7), 685–695. |
[28] | Strimmer. K and Haeseler. A,1996, Quartet puzzling: A quartet maximum likelihood method for reconstructing tree topologies, Mol. Biol. Evol, 13(7), 964–969. |
[29] | Press. WH, Teukolsky. SA, Vetterling. WT and Flannery. BP, Numerical Recipes in C: The Art of Scientific Computing, Cambridge University Press, Cambridge, 1992. |
[30] | Keane. TM,Naughton. TJ, Travers. SA, McInerney. JOand McCormack. GP, 2005,DPRml: Distributed Phylogeny Reconstruction by Maximum Likelihood, Bioinformatics 21(7), 969-974. |
[31] | Keane. TM,Naughton. TJ andMcInerney. JO, 2007,MultiPhyl: a high-throughput phylogenomics webserver using distributed computting, Nucleic Acids Research, 35(2), 33–37. |
[32] | Dereeper. A, Guignon. V, Blanc. G, Audic. S, Buffet. S, Chevenet. F, Dufayard. JF, Guindon. S, Lefort. V, Lescot. M, Claverie. JM andGascuel. O, 2007, Phylogeny.fr: robust phylogenetic analysis for the non-specialist, Nucleic Acids Research, 36, 465–469. |
[33] | Edgar. RC, 2004, MUSCLE: a multiple sequence alignment method with reduced time and space complexity, BMC Bioinformatics, 5, 113. |
[34] | Castresana. J,2000, Selection of conserved blocks for multiple alignments for their use in phylogenetic alignments, Mol. Biol.Evol,17(4), 540–552. |
[35] | Dean.J,andGhemawat. S, 2008,MapReduce: Simplified Data Processing on Large Clusters, Proc. OSDI, 137–150 |
[36] | Ropelewski. AJ, Nicholas.HB, and Mendez. RR, 2010,MPI-PHYLIP: Parallelizing Computationally Intensive Phylogenetic Analysis Routines for the Analysis of Large Protein Families., PLoS ONE 5(11): e13999. doi:10.1371/journal.pone.0013999. |
[37] | Chen. SC, Rosenberg. MSand Lindsay. BG., 2011, MixtureTree: a program for constructing phylogeny,BMC Bioinformatics 12: :111doi:10.1186/1471-2105-12-111 |
[38] | Tamura. K, Peterson. D, Peterson. N, Stecher. G, Nei. M and Kumar .S, 2011, MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods, Mol. Biol. Evoldoi: 10.1093/molbev/msr121. |
[39] | Stamatakis. A, Ludwig.T,and Meier. H, 2004, New Fast and Accurate Heuristics for Inference of Large Phylogenetic trees. Proc. IPDPS, 26-30. |