[1] | Nielsen, M., Lundegaard, C., Worning, P., Hvid, C.S., Lamberth, K., Buus, S.,Brunak, S., Lund, O.: Improved prediction of mhc class i and class ii epitopes usinga novel gibbs sampling approach. Bioinformatics 20(9) (2004) 1388_1397 |
[2] | Lund, O., Nielsen, M., Lundegaard, C., Kesmir, C., Brunak, S.: ImmunologicalBioinformatics. MIT Press (September 2005) ISBN 0-262-12280-4. |
[3] | Brusic,V., Rudy,G. and Harrison,L.C. (1994) Prediction of MHCbinding peptides using artificial neural networks. In Stonier,R.J.andYu,X.S. (eds), Complex Systems: Mechanism of Adaptation.IOS Press, Amsterdam, Holland, pp. 253–260. |
[4] | Brusic,V., Rudy,G., Honeyman,G., Hammer,J. and Harrison,L.(1998a) Prediction of MHC class II-binding peptides using anevolutionary algorithm and artificial neural network. Bioinformatics,14, 121–130. |
[5] | Brusic,V., Rudy,G. and Harrison,L.C. (1998b) MHCPEP, a databaseof MHC-binding peptides: update 1997. Nucleic Acids Res., 26,368–371. |
[6] | Chenna,R., Sugawara,H., Koike,T., Lopez,R., Gibson,T.J.,Higgins,D.G. and Thompson,J.D. (2003) Multiple sequencealignment with the Clustal series of programs. Nucleic Acids Res.,31, 3497–3500. |
[7] | Henikoff,S. and Henikoff,J.G. (1992) Amino acid substitutionmatrices from protein blocks. Proc. Natl Acad. Sci., USA, 89,10915–10919. |
[8] | Henikoff,S. and Henikoff,J.G. (1994) Position-based sequenceweights.J. Mol. Biol., 243, 574–578. |
[9] | Marshall,K.W., Wilson,K.J., Liang,J., Woods,A., Zaller,D. andRothbard,J.B. (1995) Prediction of peptide affinity to HLADRB1*0401. J. Immunol., 154, 5927–5933. |
[10] | HenrikEgebergMygind and Morten Mølgaard: Prediction of MHC class II epitopes using genetic algorithms and other metaheuristics, 2009 |
[11] | Wan J, Liu W, Xu Q, Y R, Flower DR, Li T: SVRMHC predictionserver for MHC-binding peptides. BMC Bioinformatics 2006,7:463. |
[12] | Bui H, Sidney J, Peters B, Sathiamurthy M, Sinichi A, Purton K, MothéBR, Chisari FV, Watkins DI, Sette A: Automated generation andevaluation of specific MHC binding predictive tools: ARBmatrix applications. Immunogenetics2005, 57(5):304-314. |
[13] | Nielsen M, Lundegaard C, Lund O: Prediction of MHC class IIbinding affinity using SMM-align, a novel stabilization matrixalignment method. BMC Bioinformatics 2007, 8(238) |
[14] | Noguchi H, Kato R, Hanai T, Matsubara Y, Honda H, Brusic V, KobayashiT: Hidden Markov model-based prediction of antigenicpeptides that interact with MHC class II molecules. J BiosciBioeng2002, 94(3):264-270. |
[15] | MenakaRajapakse, Bertil Schmidt, Lin Feng and Vladimir Brusic: Predicting peptides binding to MHC class II molecules usingmulti-objective evolutionary algorithms, BMC Bioinformatics 2007, 8:459 |
[16] | Bhasin M, Singh H, Raghava GP: MHCBN: a comprehensive databaseof MHC binding and non-binding peptides. Bioinformatics2003, 19(5):665-666. |
[17] | Noguchi H, Hanai T, Honda H, Harrison LC, Kobayashi T: Fuzzyneural network-based prediction of the motif for MHC classII binding peptides. J BiosciBioeng2001, 92(3):227-231. |
[18] | Jesper Salomon, Darren R Flower: Predicting Class II MHC-Peptide binding: a kernel based approachusing similarity scores, BMC Bioinformatics 2006, 7:501 |
[19] | FatihAltiparmak, AltunaAkalin, HakanFerhatosmanoglu: Predicting the Binding Affinity of MHC class II Peptides,2001 |
[20] | Arne Elofsson: Predicting of MHC class II binding peptides, using Support vector machines, Stockholm Bioinformatics center, 2003 |
[21] | El-Manzalawy Y, Dobbs D, Honavar V: On evaluating MHC-II bindingpeptide prediction methods. PLoS One 2008, 3(9):e3268. |
[22] | Morten Nielsen, Claus Lundegaard and Ole Lund: Prediction of MHC class II binding affinity using SMM-align, a novelstabilization matrix alignment method, BMC Bioinformatics 2007, 8:238 |
[23] | ARB[tools.immuneepitope.org/tools/matrix/iedb_input?matrix Class=II]. |
[24] | Metropolis,N., Rosenbluth,A.W., Teller,A.H. and Teller,E. (1953)Equation of state calculation by fast computing machines.J. Chem. Phys., 21, 1087–1092. |
[25] | Goldberg,D.E. (1989) Genetic Algorithms in Search, Optimization,and Machine Learning. Addison-Wesley, Reading. |
[26] | Peters B, Sidney J, Bourne P, Bui HH, Buus S, et al. (2005) The immune epitopedatabase and analysis resource: from vision to blueprint.PLoSBiol 3: e91.doi:10.1371/journal.pbio. 0030091. |
[27] | Peters B, Sette A (2007) Integrating epitope data into the emerging web ofbiomedical knowledge resources. Nat Rev Immunol 7: 485 490. |
[28] | Donnes P, Kohlbacher O (2006) SVMHC: a server for prediction of MHCbindingpeptides. Nucleic Acids Res 34: W194–W197. |
[29] | Shanfeng Zhu, Keiko Udaka, John Sidney, Alessandro Sette, Kiyoko F. Aoki-Kinoshitaand Hiroshi Mamitsuka: Improving MHC binding peptide prediction by incorporating binding data of auxiliary MHC molecules, April 8, 2006 |
[30] | Andrew J Bordner, Hans D Mittelmann: Prediction of the binding affinities of peptides toclass II MHC using a regularized thermodynamicmodel, BMC Bioinformatics 2010, 11:41 |