[1] | H. Rammensee, T. Friede& S. Stevanović, MHC ligands and peptide motifs: first listing, Immunogenetics, 41 (4), 1995, 178-228 |
[2] | E.Y. Jones, L. Fugger, J.L. Strominger& C. Siebold, MHC class II proteins and disease: a structural perspective, Nat Rev Immunol, 6, 2006, 271-282 |
[3] | L.J. Stern, J.H. Brown, T.S. Jardetzky& J.C. Gorga et al., Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide, Nature, 368, 1994, 215-221 |
[4] | V. Brusic, G. Rudy, G. Honeyman& J. Hammer et al., Prediction of MHC class II-binding peptides using an evolutionary algorithm and artificial neural network, Bioinformatics, 14 (2), 1998, 121-130 |
[5] | W. Zhanga, J. Liua& Y. Niub, Quantitative prediction of MHC-II binding affinity using particle swarm optimization, AI in Medicine, 50 (2), 2010, 127-132 |
[6] | H. Noguchia, R. Katoa, T. Hanaia& Y. Matsubaraa et al., Hidden Markov model-based prediction of antigenic peptides that interact with MHC class II molecules, Journal of BioSci and BioEng, 94 (3), 2002, 264-270 |
[7] | M. Nielsen, C. Lundegaard, P. Worning& C. Sylvester Hvidet al., Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach, Bioinformatics, 20 (9), 2004, 1388-1397 |
[8] | M. Bhasin& G.P.S. Raghava, SVM based method for predicting HLA-DRB1*0401 binding peptides in an antigen sequence, Bioinformatics, 20 (3), 2004, 421-423 |
[9] | O. Karpenkoa, J. Shib& Y. Daia, Prediction of MHC class II binders using the ant colony search strategy, AI in Medicine, 35 (1), 2005, 147-156 |
[10] | Y. EL-Manzalawy, D. Dobbs & V. Honavar, On Evaluating MHC-II Binding Peptide Prediction Methods, PLoS ONE, 3(9), 2008, e3268 |
[11] | Repository of Epitope Datasets (RED)[Online], Available:http://ailab.cs.iastate.edu/red/mhcii.html |
[12] | Cellular Genetic Algorithms (Springer, 2008) |
[13] | The JCellFramework[Online], Available: |
[14] | http://jcell.gforge.uni.lu |
[15] | L. Liao & W.S. Noble, Combining Pairwise Sequence Similarity and Support Vector Machines for Detecting Remote Protein Evolutionary and Structural Relationships, Journal of Comp. Bio, 10 (6), 2003, 857-868 |
[16] | C. Hsu, C. Chang & C. Lin, A Practical Guide to Support Vector Classification[Online], Available:http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf |
[17] | C. Chang & C. Lin, LIBSVM: a library for support vector machines, ACM Transactions on Intelligent Systems and Technology, 2(3), 2011, 1-27. |
[18] | P. Wang, J. Sidney, Y. Kim & A. Sette et al., Peptide binding predictions for HLA-DR, DP and DQ molecules, BMC Bioinformatics, 11, 2010, 568 |
[19] | H.H. Bui, J. Sidney, B. Peters & M. Sathiamurthy et al., Automated generation and evaluation of specific MHC binding predictive tools: ARB matrix applications, Immunogenetics, 57, 2005, 304–314 |
[20] | H. Singh & G.P. Raghava, ProPred: prediction of HLA-DR binding sites, Bioinformatics, 17, 2001, 1236–1237 |
[21] | M. Nielsen, C. Lundegaard& O. Lund, Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method, BMC Bioinformatics, 8, 2007, 238 |
[22] | M. Nielsen & O. Lund, NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction, BMC Bioinformatics, 10, 2009, 296 |