[1] | Einstein, A., 1916, Die Grundlage der allgemeinen Relativitätstheorie, Annalen der Physik 49, 770–822. |
[2] | Schwarzschild, K., 1916, Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie. Sitzungsberichte der Königlichen Preußischen Akademie der Wissenschaften zu Berlin 189–196. |
[3] | Flamm, L., 1916, Beiträge zur Einsteinschen Gravitationstheorie, Physikalische Zeitschrift. 17: 448-454. |
[4] | Luger, R., Agol, E., Bartolić, F., Foreman-Mackey, D., 2022, Analytic Light Curves in Reflected Light: Phase Curves, Occultations, and Non-Lambertian Scattering for Spherical Planets and Moons, The Astronomical Journal 164, No. 1. |
[5] | Williams, D.R., 2021, Planetary Fact Sheet – Metric (NASA, Houston, Texas). Retrieved July 16th, 2022. |
[6] | Einstein, A., 1915, Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie. Königlich Preußischen Akademie der Wissenschaften (Berlin) 47(2): 831-839. |
[7] | Cornejo, A. G., 2011, The effect of gravity hypothesis. Lat. Am. J. Phys. Educ. 5(4): 697-701. |
[8] | Cornejo, A. G., 2014, The Friedmann equations and inflationary cosmology in the effect of gravity hypothesis. Lat. Am. J. Phys. Educ. Vol. 8(4): 4315.1-7. |
[9] | Riess, A. G., et al., 1998, Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. The Astron. Jour. 116(3): 1009–1038. |
[10] | Pain, R., Astier, P., 2012, Observational Evidence of the Accelerated Expansion of the Universe. Comp. Rend. Phys. 13(6): 521–538. |
[11] | Iorio, L., 2011, General relativistic spin-orbit and spin-spin effects on the motion of rotating particles in an external gravitational field. Gen. Relativ. Gravit. 44:719-736. |
[12] | Cornejo, A. G., 2014, A Lagrangian solution for the precession of Mercury’s perihelion, Int. J. Astron. 3, 31–34. |
[13] | Cornejo, A. G., 2013, The rotating reference frame and the precession of the equinoxes, Lat. Am. J. Phys. Educ. 7(4), 591-597. |
[14] | Cornejo, A. G., 2021, Axial precession in the general theory of relativity solution, Int. J. Astron. 10(1): 1-5. |
[15] | Cornejo, A. G., 2021, Rotating disk cosmological systems in the Lagrangian and relativistic solutions, Int. J. Astron. 10(2): 50-59. |
[16] | Lense, J., Thirring, H., 1918, Über die Einfluß der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie, Zeit. Phys. 19, 156-163. |
[17] | Williams, D. R., 2018, Sun Fact Sheet, NASA Goddard Space Flight Center. Retrieved July 16th, 2022. |
[18] | Kerr, R. P., 1963, Gravitational Field of a Spinning Mass as an Example of Algebraically Special Metrics. Physical Review Letters. 11 (5): 237–238. |
[19] | Lowrie, W., 2007, Fundamentals of Geophysics, 2nd ed. Cambridge University Press. |
[20] | Cornejo, A. G., 2013, Solution of Einstein’s Field Equations for an accelerated magnetic wave. Lat. Am. J. Phys. Educ. 7(2): 217–221. |
[21] | Mueller, I. I., 1969, Spherical and Practical Astronomy as Applied to Geodesy. Frederick Ungar Publishing, NY, pp. 80. |
[22] | Malkin, Z., Miller, N., 2009, Chandler wobble: two more large phase jumps revealed. Earth, Planets and Space. 62 (12): 943–947. |
[23] | Romeo, A. B., Mogotsi, K. M., 2018, Angular momentum and local gravitational instability in galaxy discs: does Q correlate with j or M? Mon. Not. R. Astron. Soc. 000, 1–5. |
[24] | Konopliv, A. S., Park, R. S., Rivoldini, A., Baland, R. M., Maistre, S. L., Hoolst, T. V., Yseboodt, M., Dehant, V., 2020, Detection of the Chandler Wobble of Mars From Orbiting Spacecraft. Geophysical Research Letters. 47 (21). |
[25] | Kardar, M., Parisi, G., Zhang, Y., 1986, Dynamic Scaling of Growing Interfaces, Phys. Rev. Lett. 56, 889. |
[26] | NASA/JPL/Malin Space Science Systems (MSSS), Mars Global Surveyor, May 8, 2003. Retrieved March 18th, 2022. |
[27] | NASA Science, Share the science, Pictures of Earth from Mars. Mars Global Surveyor, May 8, 2003. Retrieved March 18th, 2022. |