[1] | Newton, I., Philosophiæ Naturalis Principia Mathematica, (Cambridge, UK, 1867), London (1982). |
[2] | Unzicker, A., 2008, Why do we still believe in Newton’s law? Facts, Myths and Methods in Gravitational Physics. arXiv:gr-qc/0702009v8. |
[3] | Sofue, Y., and Rubin, V. C., 2001, Astron. Astrophys. Vol. 39, p.137. arXiv: astro-ph/0010594. |
[4] | Milgrom, M., 1983, A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophysical Journal. 270: 365–370. DOI: 10.1086/161132. |
[5] | Kyu-Hyun Chae et al., 2020, Testing the strong equivalence principle: Detection of the external field effect in rotationally supported galaxies, Ap J 904: 51, https://doi.org/10.3847/1538-4357/abbb96. |
[6] | Einstein, A., 1955, The Meaning of Relativity, 5th ed. Princeton University Press, Princeton. |
[7] | Arbab, A. I., 2012, J. Mod. Phys., Vol. 3 No. 29, 1231-1235. arXiv:1105.1911 [physics.gen-ph]. |
[8] | Cornejo, A. G., 2014, A lagrangian solution for the precession of Mercury’s perihelion, Int. J. Astron. 3, 31–34. http://article.sapub.org/10.5923.j.astronomy.20140302.01.html. |
[9] | Cornejo, A. G., 2013, The rotating reference frame and the precession of the equinoxes, Lat. Am. J. Phys. Educ. 7(4), 591. http://www.lajpe.org/dec13/11-LAJPE_834_Adrian_Cornejo.pdf. |
[10] | Cornejo, A. G., 2021, Axial precession in the general theory of relativity solution, Int. J. Astron. 10(1): 1-5. http://article.sapub.org/10.5923.j.astronomy.20211001.01.html. |
[11] | Cornejo, A. G., 2020, The rotational velocity of spiral Sa galaxies in the general theory of relativity solution, Int. J. Astron. 9(2): 27-30. http://article.sapub.org/10.5923.j.astronomy.20200902.01.html. |
[12] | Cornejo, A. G., 2021, The rotational velocity of barred spiral galaxies in the general relativity solution, Int. J. Astron. 10(1): 6-12. http://article.sapub.org/10.5923.j.astronomy.20211001.02.html. |
[13] | Baba, J., Morokuma-Matsui, K., Miyamoto, Y., Egusa, F., and Kuno, N., 2016, Gas velocity patterns in simulated galaxies: observational diagnostics of spiral structure theories. Monthly Notices of the Royal Astronomical Society, 460(3), 2472-2481. |
[14] | Vladimir, I. A., 1989, Mathematical Methods of Classical Mechanics, 2nd edn. Springer, p. 130. |
[15] | Tocaci, E., 1984, Relativistic Mechanics, Time, and Inertia, C. W. Kilmister Ed., Cambridge University Press. |
[16] | Hand, L. N. and Finch, J. D., 2008, Analytical Mechanics, Cambridge: Cambridge University Press. |
[17] | Ramos, J., de Montigny, M. and Khanna, F. C., 2010, Gen. Relativ. Gravit. 42(10). |
[18] | Goldstein, H., Poole, Ch. P., and Safko, J. L., 2002, Classical Mechanics, 3rd edn., Addison-Wesley Publishing Company, Inc. Reading, Massachusetts. |
[19] | Tan, A., 2008, Theory of Orbital Motion, Singapore: World Scientific Publishing Co. Pte. Ltd. |
[20] | Danby, J. M. A., 1988, Fundamentals of Celestial Mechanics. 2nd edn., Richmond: Willmann-Bell, Inc. |
[21] | Weinberg, S., 1972, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. John Wiley. ISBN 978-0-471-92567-5. |
[22] | Cheng, T., 2005, Relativity, gravitation, and cosmology, Oxford University Press. pp. 98–99. |
[23] | Cornejo, A. G., 2010, The equivalent expressions between escape velocity and orbital velocity, Lat. Am. J. Phys. Educ., 4(3), p. 578. http://www.lajpe.org/sep10/421_Adrian_Cornejo.pdf. |
[24] | Schwarzschild, K., 1916, Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie. Sitzungsberichte der Königlichen Preußischen Akademie der Wissenschaften zu Berlin 189–196. |
[25] | Scarborough, J. B., 1958, The Gyroscope: Theory and Applications. New York: Interscience Publishers, Inc., pp. 37-52. |
[26] | Einstein, A., 1915, Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie. Königlich Preußischen Akademie der Wissenschaften (Berlin) 47(2) pp. 831-839. |
[27] | Beatty, J. K., Petersen, C. C., Chaikin, A., Chaikin, A. L., 1990, The New Solar System, 4th edn. Cambridge University Press, Cambridge. |
[28] | Williams, D. R., 2019, Planetary Fact Sheet – Metric, NASA, Houston, Texas. http://nssdc.gsfc.nasa.gov/planetary/factsheet. Accessed on June 9th, 2020. |
[29] | Kerr, R. P., 1963, Gravitational Field of a Spinning Mass as an Example of Algebraically Special Metrics. Physical Review Letters. 11 (5): 237–238. DOI: https://doi.org/10.1103/PhysRevLett.11.237. |
[30] | Visser, M., 2008, The Kerr spacetime: A brief introduction, arXiv:0706.0622. |
[31] | Romeo, A. B., and Mogotsi, K. M., 2018, Mon. Not. R. Astron. Soc. 000, 1–5. arXiv:1805.05871 [astro-ph.GA]. |
[32] | Akylas, A., and Georgantopoulos, I., 2009, Astron. Astrophys. 500.3: 999–1012. DOI: http://dx.doi.org/10.1051/0004-6361/200811371. |
[33] | Jardel, J. R. et al., 2011, Orbit-based dynamical model of the sombrero galaxy (NGC 4594). ApJ: 30. arXiv:1107.1238. |
[34] | Rubin, V. C., Ford, W. K. Jr., Strom, K. S., Strom, S. E., and Romanishin, W., 1978, ApJ, Vol. 224, p. 782-795. |
[35] | McMillan, P. J., 2016, The mass distribution and gravitational potential of the Milky Way, Mon. Not. R. Astron. Soc. 419, 2095–2115. arXiv:1608.00971. |
[36] | Valenti, E. et al., 2016, Stellar density profile and mass of the Milky Way bulge from VVV data, A&A 587, L6. DOI: https://doi.org/10.1051/0004-6361/201527500. |
[37] | Kyazumov, G. A., 1980, Velocity field of the galaxy NGC 7541, Pisma v Astronomicheskii Zhurnal, vol. 6, July 1980, p. 398-401. Soviet Astronomy Letters, vol. 6, July-Aug. 1980, p. 220-222. Translation. |
[38] | Mineo, S., Gilfanov, M., and Sunyaev, R. 2012, X-ray emission from star-forming galaxies – I. High-mass X-ray binaries, Mon. Not. R. Astron. Soc. 419, 2095–2115. DOI: https://doi.org/10.1111/j.1365-2966.2011.19862.x. |
[39] | Rubin, V. C., Ford, W. K. Jr., and Thonnard, N., 1978, ApJ, 225: L107-L111. |
[40] | Kutner, M. L., 2003, Astronomy: A Physics Perspective. Cambridge University Press, Cambridge, 2nd ed. DOI: https://doi.org/10.1017/CBO9780511802195. |
[41] | Binney, J., and Tremaine, S., 2008, Galactic Dynamics, 2nd ed. Princeton University Press, Princeton. |