[1] | A. G. Riess, et al., “Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant”, Astrophys. J., Volume 116, pp. 1009-1038, 1998. |
[2] | S. J. Perlmutter, et al., “Discovery of a supernova explosion at half the age of the Universe”, Nature (London) 391, pp. 51-54, 1998. |
[3] | P. M. Garnavich, et al, “Constraints on cosmological models from Hubble Space Telescope of observations of high z-supernovae”, Astrophysical Journal, 493, L53, 1998. |
[4] | D. N. Spergel, et al., “First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations : Determination of Cosmological Parameters”, The Astrophysical Journal Supplement Series 148: pp. 175-194, 2003. |
[5] | D. N. Spergel, et al., “Three Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations : Implications for cosmology”, The Astrophysical Journal Supplement Series 170: pp. 377, 2007. |
[6] | E. Komatsu, et al., “Five Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological interpretation”, The Astrophysical Journal Supplement Series 180: pp. 330-376, 2009. |
[7] | E. Komatsu, et al., “Seven Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological interpretation”, The Astrophysical Journal Supplement Series 192: pp. 18, 2011. |
[8] | M. Tegmark, et al., “Cosmological parameters from SDSS and WMAP”, Physical Review D 69, 103501, 2004. |
[9] | D. J. Eisenstein, et al. “Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies”, The Astrophysical Journal, 633: pp. 560-574, 2005. |
[10] | S. Weinberg, et al., “The cosmological constant problems” astro-ph/0005265, 2000. |
[11] | C. Wetterich, et al., “Cosmology and the fate of dilatation symmetry”, Nuclear Physics B 302, pp. 668-696, 1998. |
[12] | B. Ratra, et al., “Cosmological consequences of a rolling homogeneous scalar field”, Physical Review D, 37, pp. 3406, 1988. |
[13] | R. Caldwell, et al., “Cosmological imprint of an energy component with general equation of state”, Physical Review Letters, 80, pp. 1582-1585, 1998. |
[14] | R. R. Caldwell, et al., "A phantom menace ? Cosmological consequences of dark energy component with super negative equation of state". Physics Letters B, 545, pp. 23-29, 2002 |
[15] | R. R. Caldwell, et al., “Phantom energy: Dark energy with causes a cosmic doomsday”, Physical Review Letters, Vol. 91, Issue 7-5, 071301, 2003. |
[16] | M. R. Setare, J. Sadeghi, A. R. Amani, et al., “Interacting tachyon dark energy in non-flat universe”, Phys.Lett.B673: pp. 241-246, 2009. |
[17] | M. R. Setare, et al., “Holography Chaplygin Gas Model”, Physics Letters B, Volume 648, Issues 5-6, pp. 329-332, 2007. |
[18] | M. R. Setare, et al., “Holographic Chaplygin DGP Cosmologies”, International Journal of Modern Physics D, Volume 18, Issues 03, pp. 419-427, 2009. |
[19] | N. Afshordi, D. J. H. Chung, G. Geshnizjani, et al., “Casual field thery with an infinite speed of sound”, Phys rev. D 75, 083513, 2007. |
[20] | B. Feng, et al., “Dark energy constraints from the cosmic age and supernovae”, Physics Letters B, 607, pp. 35-41, 2005. |
[21] | B. Feng, et al., “Oscillating quintom and the recurrent universe”, Physics Letters B, 634, pp. 101-105, 2006. |
[22] | Z. K. Guo, et al., “Cosmological evolution of a quintom model of dark energy”, Physics Letters B, vol. 608, no. 3-4, pp. 177–182, 2005. |
[23] | C. Feng, et al., “Observational constraints on the dark energy and dark matter mutual coupling”, Physics Letters B, vol. 665, pp. 111-119, 2008. |
[24] | J. H. He, et al., “Stability of the curvature perturbation in dark sectors mutual interacting models”, Physics Letters B, vol. 671, pp. 139-145, 2009. |
[25] | B. Wang. et al., “Interacting dark energy and dark matter: Observational constraints from cosmological parameters”, Nuclear Physics B, vol. 778, pp. 69-84, 2007. |
[26] | B. Wang, et al., “Transition of the dark energy equation of state in an interacting holographic dark energy model”, Physics Letters B, vol. 624, pp. 141-146, 2005. |
[27] | J. Cui, et al., “Cosmic age problem revisited in the holographic dark energy model”, Physics Letters B, vol. 690, pp. 233-238, 2010. |
[28] | B. J. Lu, et al., “Investigate the interaction between dark matter and dark energy”, Results in Physics, vol. 2, pp. 14-21, 2012. |
[29] | B. J. Lu, et al., “Time variable cosmological constant of holographic origin with interaction in Brans-Dicke Theory”, International Journal of Modern Physics D, Vol. 21, Issue 1, 1250005, 2012. |
[30] | W. Chakborty, et al., “Generalized cosmic Chaplygin gas model with or without interaction”, Gravitation and Cosmology, vol. 13, pp. 294-297, 2007. |
[31] | M. M. Verma, et al., “A tachyonic scalar field with mutually interacting components”, International Journal of Theoretical Physics, Volume 51, Issue 8, pp. 2370-2379, 2012. |
[32] | M. M. Verma, et al., “Evolution of shifted cosmological parameter and shifted dust matter in a two-phase tachyonic field universe”, Astrophysics and Space Science, Volume 344, Issue 2, pp. 505-512, 2013. |
[33] | M. M. Verma, et al., “Dark energy as a manifestation of the non constant cosmological constant”, Astrophysics and Space Science, Volume 330, Issue 1, pp. 101-105, 2010. |
[34] | M. M. Verma, et al., “The BICEP2 data and a single Higgs-like interacting tachyonic field”, International Journal of Modern Physics D, 23 (9), 1450075, 2014. |
[35] | P. Rudra, et al., “Dynamics of interacting generalized cosmic Chaplygin gas in Brane-World scenario”, Astrophysics and Space Science, vol. 342, Issue 2, pp 579-599, 2012. |
[36] | A. R. Amani, et al., “Interaction of closed string tachyon with generalized cosmic Chaplygin gas”, International Journal of Geometric Methods in Modern Physics, Vol. 11, Issue 8, 1450065, 2014. |
[37] | R. Chowdhury, et al., “Interacting generalized cosmic Chaplygin gas in loop quantum cosmology: A singularity free universe”, International Journal of Theoretical Physics, Vol. 52, Issue 2, pp. 489-503, 2012. |
[38] | J. Naji, et al., “Interacting holographic generalized cosmic Chaplygin gas model” Astrophysics and Space Science, vol. Vol. 350, Issue 1, pp. 385-392, 2014. |
[39] | M. Jamil, et al., “Interacting dark energy with inhomogeneous equation of state”, The European Physical Journal C, Vol. 56, Issue 3, pp. 429-434, 2008. |
[40] | A. Kamenshchik, U. Moschella, V. Pasquier, et al., “An Alternative To Quintessence” Physics Letters, Section B, Vol. 511, no. 2-4, pp. 265-268, 2001. |
[41] | M. Bordemann, J. Hoppe, et al., “The dynamics of relativistic membranes. Reduction to 2-dimensional fluid dynamics”, Physics Letters B, 317, 315-320, 1993. |
[42] | M. C. Bento, O. Bertolami, A. A. Sen, et al., “Generalized Chaplygin gas, accelerated expansion, and dark-energy-matter unification”, Physical Review D, 66, 043507, 2002 |
[43] | H. B. Benaoum, et al., “Modified Chaplygin Gas Cosmology,” Advances in High Energy Physics, vol. 2012, Article ID 357802, 12 pages, 2012. |
[44] | K. Ichikawa, et al., “Constraint on the effective number of neutrino species from the WMAP and SDSS LRG power spectra”, Journal of Cosmology and Astroparticle Physics, Issue 05, 0705:007, 2007. |
[45] | M. R. Setare, et al., “Interacting generalized Chaplygin model in non-flat universe”, The European Physical Journal C Volume 52, Issue 3, pp. 689-692, 2007. |
[46] | H. Kim, H. W. Lee, Y. S. Myung, et al., “Equation of state for an interacting holographic dark energy model”,Volume 632, Issues 5-6, pp 605-609, 2006. |
[47] | C. L. Bennett, et al., “First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results”, The Astrophysical Journal Supplement Series, Volume 148, Issue 1, pp. 1-27, 2003. |
[48] | G. Diaz, F. Pedro, et al., “ You Need Not Be Afraid of Phantom Energy” Physical Review D 68 021303, 2003. |
[49] | P. Rudra, et al., “Role of generalized cosmic Chaplygin gas in accelerating universe : A field theoretical prescription”. Modern Physics Letters A 28 (22), 1350102.holographic dark energy model. Physics Letters, B624, pp. 141- 146, 2013. |
[50] | P. Thakur, et al., “Modified Chaplygin Gas and Constraints on its B parameter from CDM and UDME Cosmological models”, Monthly Notices of the Royal Astronomical Society, Vol. 397, Issue 4, pp. 1935-1939, 2009. |
[51] | M. Sharif, et al., “Study of inflationary generalized cosmic Chaplygin gas for standard and tachyon scalar fields”, The European Physical Journal C, Volume 74, pp. 2943, 2014. |
[52] | B.C. Paul, et al., “Observational Constraints on Modified Chaplygin Gas in Horava-Lifshitz Gravity”, Pramana Journal of Physics, Volume 81, Issue 4, pp. 691-718, 2013. |
[53] | K. Liao, et al., “Observational constraints on new generalized Chaplygin gas model”, Research in Astronomy and Astrophysics, Vol. 13, No. 2, pp. 159-169, 2013. |
[54] | C. Ranjit, et al., “Constraining parameters of generalized cosmic Chaplygin gas in loop quantum cosmology”, Vol. 354, pp. 2126, 2014. |