[1] | Tocaci, E., 1984, Relativistic Mechanics, Time, and Inertia, C. W. Kilmister Ed., Cambridge University Press, Cambridge, UK, pp. 183-251. |
[2] | Ramos, J., de Montigny, M. and Khanna, F. C., 2010, On a Lagrangian formulation of gravitoelectromagnetism, Gen Relativ Gravit, Vol. 42, No. 10, pp. 2403-2420. |
[3] | Goldstein, Herbert; Poole, Charles P.; Safko, John L., 2002, Classical Mechanics, 3rd ed., Addison-Wesley Publishing Company, Inc. Reading, Massachusetts, p. 21. |
[4] | Marion, J. B., 1970, Classical Dynamics of Particles and Systems, 2nd ed., New York, Academic Press. |
[5] | Tan, A., 2008, Theory of Orbital Motion, Singapore: World Scientific Publishing Co. Pte. Ltd., pp. 90-106. |
[6] | Danby, J. M. A., 1988, Fundamentals of Celestial Mechanics, 2nd ed., Richmond: Willmann-Bell, Inc., pp. 59–63. |
[7] | Einstein, A., 1956, The Meaning of Relativity, 5th ed., Princeton, NJ: Princeton University Press, pp 157-159. |
[8] | Scarborough, J. B., 1958, The Gyroscope: Theory and Applications, New York: Interscience Publishers, Inc., pp. 37-52. |
[9] | Cornejo, A. G., 2010, The equivalent expressions between escape velocity and orbital velocity, Lat. Am. J. Phys. Educ., Vol. 4, No. 3, pp. 578-579. |
[10] | Schwarzschild, K., 1916, Uber das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie, Sitzungsberichte der Deutschen Akademie der Wissenschaften zu Berlin, Klasse fur Mathematik, Physik, und Technik, p. 424. |
[11] | Einstein, A., 1915, Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie, Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin) 47(2) pp. 831-839. |
[12] | Beatty, J. K., Petersen, C. C., Chaikin, A. and Chaikin, A. L., 1990, The New Solar System, 4th ed., Cambridge: Cambridge University Press, pp. 193–198. |