[1] | Chang, H. J., Huang, K. C., & WU, C. H. (2005). Constructing indirect randomized response techniques using symmetry of response. Journal of Information & Optimization Sciences, 26(3), 549-557. |
[2] | Eichhorn, B.H. and Hayre, L. S. (1983). Scrambled randomized response models for obtaining sensitive quantitative data. Journal of Statistical Planning and Inference, 7, 307-316. |
[3] | Gupta, S., Gupta, B. and Singh, S. (2002). Estimation of sensitivity level of personal interview survey questions. Journal of Statistical Planning and Inference, 100, 239-247. |
[4] | Gupta, S., Kalucha, G., Shabbir, J. and Dass, B.K. (2014). Estimation of finite population mean using optional models in the presence of non-sensitive auxiliary information. American Journal of Mathematical and Management Sciences, 33(2), 147-159. |
[5] | Huang, K.C. (2008). Estimation for sensitive characteristics using optional randomized response technique. Quality and Quantity, 42(5), 679-686. |
[6] | Saleem, I., Sanaullah, A., Koyuncu, N., Hanif, M., (2019). Estimation of Mean of a Sensitive Quantitative Variable in Complex Survey: Improved Estimator and Scrambled Randomized Response Model, Journal of Science, Ghazi University, 32(3): 1021-1043. |
[7] | Mushtaq, N., Noor-ul-Amin, M. and Hanif, M. (2017). A Family of Estimators of a Sensitive Variable Using Auxiliary Information in Stratified Random Sampling, Pakistan Journal of Statistics and operation research. 13(1), 141-155. |
[8] | Noor-ul-Amin, M., Mushtaq, N., and Hanif, M. (2018). Estimation of mean using generalized optional scrambled responses in the presence of nonsensitive auxiliary variable, Journal of Statistics and Management Systems. 21(2): 287-304. |
[9] | Noor-ul-Amin, M. and Hanif, M. (2012). Some exponential estimators in survey sampling. Pak. J. Statist. 28(3), 367-374. |
[10] | Partha Parichha & Dr. Kajla Basu & Arnab Bandyopadhyay, 2020. "Development of Estimation Procedure of Population Mean in Two-Phase Stratified Sampling," Chapters, in: Jan Peter Hessling (ed.), Statistical Methodologies, Intech Open. |
[11] | Sahoo, L., Mishra, G., and Nayak, S. (2010). On two different classes of estimators in two-phase sampling using multi-auxiliary variables. Model Assisted Statistics and Applications, 5(1): 61-68. |
[12] | Sanaullah, A., Ali, H. A., Noor-ul-Amin, M. and Hanif, M., (2014). Generalized Exponential chain ratio estimators under stratified two-phase random sampling. Applied Mathematics and Computation. 226, 541-547. |
[13] | Singh, P. and Vishwakarma, K. (2007). Modified exponential ratio and product estimators for finite population mean in Double sampling. Austral. J. Statist. 36, 217-225. |
[14] | Sousa, R., Shabbir, J., Real, P. C., and Gupta, S. (2010). Ratio estimation of the mean of a sensitive variable in the presence of auxiliary information. Journal of Statistical Theory and Practice, 4(3), 495-507. |
[15] | Sukhatme, B.V. (1962). Some ratio-type estimators in two-phase sampling, J. Amer. Statist. Assoc. 57, 628-632. |
[16] | Warner, S. L. (1965). Randomized response: A survey technique for eliminating evasive answer bias. Journal of the American Statistical Association, 60, 63-69. |