[1] | C. Guillope, J.C. Saut, Mathematical problems arising in differential models for viscoelastic fluids, J.F. Rodrigues and A. Sequeira eds., Mathematical Topics in Fluid Mechanics, Longman, Halow (1992), 64-92. |
[2] | R. B. Bird, R.C. Amstrong and O. Hassanger, Dynamics of Polymer Liquids, John Willey and Sons, New York (1987). |
[3] | M. Renardy, Mathematical analysis of viscoelastic flow, CBMS-NSF Regional Confer- ence Series in Applied Mathematics, 73. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2000). |
[4] | W.R. Schowalter, Mechanics of Non-Newtonian Fluids, Pergamon Press, New York (1978). |
[5] | C. Truesdell and W. Noll, The non-linear filed theories of mechanics, Encyclopedia of Physics (ed. S. Fluggel) vol III/3, Springer Verlasg (1965). |
[6] | J. G. Oldroyd, On the formulation of rheological equations of state, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 200 (1950), pp. pp. 523–541. |
[7] | S. D. R. Wilson, The Taylor-Saffman problem for a non-Newtonian liquid, Journal of Fluid Mechanics, 220 (1990), pp. 413–425. |
[8] | S. Mora and M. Manna, Saffman-Taylor instability for generalized newtonian fluids, Phys. Rev. E, 80 (2009), p. 016308. |
[9] | S. Mora and M. Manna, Saffman-Taylor instability of viscoelastic fluids: From viscous fingering to elastic fractures, Phys. Rev. E, 81 (2010), p. 026305. |
[10] | N. Arada, M. Pires and A. Sequeira, Numerical simulations of shear-thinning Oldroyd-B fluid in curved pipes, IASME Transactions, issue 6 vol. 2 (2005), 948-959. |
[11] | Y. Fan, R. Tanner and N. Phan-Tien, Fully developed viscous and viscoelastic flow in curved pipes, J. Fl. Mech., 440 (2001), 327-357. |
[12] | S. Saprykin, R. Koopmans, and S. Kalliadasis, Free-surface thin-film flows over topography; influence of inertia and viscoelasticity, J. Fluid Mech., 58 (2007), pp. 271– 293. |
[13] | P. G. Saffman and G. Taylor, The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 245 (1958), pp. 312–329. |
[14] | J. Nittmann, G. Daccord, and H. E. Stanley, Fractal growth viscous fingers: quantitative characterization of a fluid instability phenomenon, Nature, 314 (1985), pp. 141–144. |
[15] | H. Van Damme, H. Obrecht, P. Levitz, L. Gatineau, and C. Laroche, Fractal viscous fingering in clay slurries, Nature, 320 (1986), pp. 731–733. |
[16] | H. Van Damme, E. Alsac, C. Laroche, and L. Gatineau, On the respective roles of low surface tension and non-newtonian rheological properties in fractal fingering, EPL (Europhysics Letters), 5 (1988), p. 25. |
[17] | H. Zhao and J. V. Maher, Associating-polymer effects in a Hele-Shaw experiment, Phys. Rev. E, 47 (1993), pp. 4278–4283. |
[18] | J. Nase, A. Lindner, and C. Creton, On the respective roles of low surface tension and non-Newtonian rheological properties in fractal fingering, Phys. Rev. Lett., 101 (2008). |