| [1]   | J. Mathews, Numerical Methods for Mathematics, Science and Engineering, Prentice-Hall, 1987. | 
| [2]   | M. K Jain, S. R. K. Iyengar, R. K. Jain, Numerical methods – problems and solutions, New Age International Limited, New Delhi, 1994. | 
| [3]   | E. Suli, D. Mayers, An Introduction to Numerical Analysis, Cambridge University Press, New York, 2003. | 
| [4]   | R. C. Shah, Intorduction to Complex Variables & Numerical Methods, Books India Publications, Ahmedabad, India 2012. | 
| [5]   | J. H. He, A new iteration method for solving algebraic equations, Applied Mathematics and Computation 135 (2003) 81-84. | 
| [6]   | M. Frontini, E.Sormani, Some variant of Newton’s method with third-order convergence, Applied Mathematics and Computation 140 (2003) 419-426. | 
| [7]   | X. G. Luo, A note on the new iteration method for solving algebraic equations, Applied Mathematics and Computation 171 (2005) 1177-1183. | 
| [8]   | Mamta, V. Kanwar, V.K. Kukreja, S. Singh, On a class of quadratically convergent iteration formulae, Applied Mathematics and Computation 166 (2005) 633-637. | 
| [9]   | Mamta, V. Kanwar, V.K. Kukreja, S. Singh, On some third-order iterative methods for solving nonlinear equations, Applied Mathematics and Computation 171(2005) 272-280. | 
| [10]   | N. Ujevic’, A method for solving nonlinear equations, Applied Mathematics and Computation 174 (2006) 1416-1426. | 
| [11]   | V. Kanwar, A family of third-order multipoint methods for solving nonlinear equations, Applied Mathematics and Computation 176 (2006) 409-413. | 
| [12]   | J. Chen, W. Li, On new exponential quadratically convergent iterative formulae, Applied Mathematics and Computation 180 (2006) 242-246. | 
| [13]   | W. Peng, H. Danfu, A family of iterative methods with higher-order convergence, Applied Mathematics and Computation 182 (2006) 474-477. | 
| [14]   | I. Abu-Alshaikh, A. Sahin, Two-point iterative methods for solving nonlinear equations, Applied Mathematics and Computation 182 (2006) 871-878. | 
| [15]   | G. Adomian, A new approach to nonlinear partial differential equations, J. Math. Anal. Appl. 102 (1984) 420-434. | 
| [16]   | G. Adomian, R. Rach, On the solution of algebraic equations by the decomposition method, J. Math. Anal. Appl. 105 (1985) 141-166. | 
| [17]   | G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, Kluwer Academic Publishers, 1994. | 
| [18]   | M. A. Noor, K. I. Noor, Three-step iterative methods for nonlinear equations, Applied Mathematics and Computation 183 (2006) 322-327. | 
| [19]   | G. Adomian, Nonlinear Stochastic Systems and Applications to Physics, Kluwer Academic Publishers, Dordrecht, 1989. | 
| [20]   | T. Fang, F. Guo, C. F. Lee, A new iteration  method with cubic convergence to solve nonlinear algebraic equations, Applied Mathematics and Computation 175 (2006) 1147-1155. | 
| [21]   | J. Chen, New modified regula falsi method for nonlinear equations, Applied Mathematics and Computation 184 (2007) 965-971. | 
| [22]   | E. Kahya, J. Chen, A modified secant method for unconstrained optimization, Applied Mathematics and Computation 186 (2007) 1000-1004. | 
| [23]   | J. R. Sharma, A one-parameter family of second-order iteration methods, Applied Mathematics and Computation 186 (2007) 1402-1406. | 
| [24]   | M. A. Noor, K. I. Noor, Fifth-order iterative methods for solving nonlinear equations, Applied Mathematics and Computation 188 (2007) 406-410. | 
| [25]   | E. Halley, A new exact and easy method for finding the roots of equations generally and that without any previous reduction, Philos. R. Soc. London 18 (1964) 136-147. | 
| [26]   | C. Chun, A one-parameter family of quadratically convergent iteration formulae, Applied Mathematics and Computation 189 (2007) 55-58. | 
| [27]   | K. I. Noor, M. A. Noor, Iterative methods with fourth-order convergence for nonlinear equations, Applied Mathematics and Computation 189 (2007) 221-227. | 
| [28]   | C. Chun, Construction of third-order modifications of Newton’s method, Applied Mathematics and Computation 189 (2007) 662-668. | 
| [29]   | C. Chun, On the construction of iterative methods with at least cubic convergence, Applied Mathematics and Computation 189 (2007) 1384-1392. | 
| [30]   | R. K. Saeed, K. M. Aziz, An iterative method with quartic convergence for solving nonlinear equations, Applied Mathematics and Computation 202 (2008) 435-440. | 
| [31]   | M.A. Noor, K. I. Noor, S.T. Mohyud-Din, A. Shabbir, An iterative method with cubic convergence for nonlinear equations, Applied Mathematics and Computation 183 (2006) 1249-1255. | 
| [32]   | A. K. Maheshwari, A fourth order iterative method for solving nonlinear equations, Applied Mathematics and Computation 211 (2009) 383-391. | 
| [33]   | C. Chun, B.  Neta, Certain improvements of Newton’s method with fourth-order convergence, Applied Mathematics and Computation 215 (2009) 821-828. | 
| [34]   | M. K. Singh, A six-order variant of Newton’s method for solving nonlinear equations, Computational Methods in Science and Technology 15(2) (2009) 186-193. | 
| [35]   | R. Thukral, A new eighth-order iterative method for solving nonlinear equations, Applied Mathematics and Computation 217 (2010) 222-229. | 
| [36]   | M. Matinfar and M. Aminzadeh, An iterative method with six-order convergence for solving nonlinear equations, International Journal of Mathematical Modeling and Computations 2(1) ( 2012) 45-51. | 
| [37]   | R. C. Shah, R. B. Shah, New ordinate-abscissa based iterative schemes to solve nonlinear algebraic equations, American Journal of Computational and Applied Mathematics 3(2) (2013) 112-118. |