[1] | Lemonte A. J., Barreto-Souza W, Cordeiro G. M. (2013), “The exponentiated kumaraswamy distribution and its log-transform”, Brazilian Journal of Probability and Statistics, vol. 27, No 1, 31-53. |
[2] | Mudholkar, G. S., Srivastava, D. K., Freimer, M. (1995). “The exponentiated weibull family”. Technometrics 37, 436-445. |
[3] | Gupta, R. C., Gupta, R. D., and Gupta, P. L. (1998), “Modeling failure time data by Lehman alternatives”, Communications in Statistics: Theory and Methods, vol. 27, no. 4, pp. 887-904. |
[4] | Gupta, R. D., Kundu, D. (1999). “Generalized exponential distributions”, Australian and New Zealand Journal of Statistics41,173-188. |
[5] | Gupta, R. D and Kundu, D. (2001). “Exponentiated Exponential Family: An alternative to Gamma and Weibull”. Biometrical Journal 43, 117-130. |
[6] | Nadarajah, S. and Kotz, S. (2006). The exponentiated type distributions. Acta Applicandae Mathematicae 92, 97-111. |
[7] | Silva, R. B., Barreto-Souza, W., Cordeiro, G. M. (2010). “A new distribution with decreasing, increasing and upside-down bathtub failure rate”, Computational Statistics and Data analysis 54, 935-944. |
[8] | Lemonte A. J., Cordeiro G. M. (2011), “The exponentiated generalized inverse Gaussian distribution”, Statistics and Probability Letters, Vol. 81, Issue 4, 506-517. |
[9] | Flaih A, Elsalloukh H, Mendi E, Milanova M, “The Exponentiated Inverted Weibull Distribution”. Applied Mathematics and Information Sciences, Vol. 6, No. 2, (2012), 167-171. |
[10] | Elbatal, I., Muhammed, H. Z. (2014) “Exponentiated Generalized Inverse Weibull distribution” Applied Mathematical Sciences, Vol. 8, no. 81, 3997-4012. |
[11] | Cordeiro, G. M, Ortega, E. M., and da Cunha D. C (2013) “The Exponentiated Generalized Class of Distributions”. Journal of Data Science 11(2013), 1-27. |
[12] | Eugene, N., Lee, C., Famoye, F (2002). “Beta-Normal distribution and its applications”. Communication in Statistics: Theory and Methods, Vol. 31, 497-512. |
[13] | Abouammoh A. M. and Alshingiti, A. M (2009). Reliability estimation of generalized inverted exponential distribution”, Journal of Statistical Computation and Simulation, vol. 79, no 11-12, pp. 1301-1315. |
[14] | Keller, A. Z and Kamath, A. R (1982). “Reliability analysis of CNC Machine Tools”. Reliability Engineering”. Vol. 3, pp. 449-473. |
[15] | Anake T. A, Oguntunde P. E, Odetunmibi O. A (2015), “On a Fractional Beta-Exponential Distribution”, International Journal of Mathematics and Computation, Vol. 26, Issue 1, 26-34. |
[16] | Oguntunde P. E., Odetunmibi O. A., & Adejumo A. O., “A Study of Probability Models in Monitoring Environmental Pollution in Nigeria,” Journal of Probability and Statistics, vol. 2014, Article ID 864965, 6 pages, 2014. doi:10.1155/2014/864965. |
[17] | Oguntunde P. E., Babatunde O. S., and Ogunmola A. O.(2014), “Theoretical Analysis of the Kumaraswamy- Inverse Exponential Distribution” International Journal of Statistics and Applications, Vol. 4, No. 2, (2014)113-116. |
[18] | Oguntunde, P. E, Odetunmibi, O.A, Adejumo A.O (2014). “On the Sum of exponentially distributed random variables: A convolution approach”. European Journal of Statistics and Probability, 2(1), 1-8. |
[19] | Oguntunde P. E, Odetunmibi O. A, Edeki S. O, Adejumo A. O (2014), “On the modified ratio of exponential distributions” Bothalia Journal, vol 44, no 4, pp. 166-174. |
[20] | Singh S. K., Singh U., Kumar M. (2013), “Estimation of Parameters of Generalized Inverted Exponential Distribution for Progressive Type-II Censored Sample with Binomial Removals”. Journal of Probability and Statistics. Volume 2013, Article ID 183652.http://dx.doi.org/10.1155/2013/183652. |