[1] | F. Albrecht, A. Haddad, N. Wax, 1994. The dynamics of two interacting popu- lations, J. Math. Anal. Appl., 46, pp. 658-670. |
[2] | G. Birkoff, G. C. Rota, Ordinary Differential Equations, Ginn, 1982. |
[3] | J. M. Cushing, 1980. Two species competition in a periodic environment, J. Math. Biol., 10. pp. 385-400. |
[4] | J. Chottopadhay, N. Bairagi, R. R. Sarkar, 2000. Apredator-prey model with some cover on prey species, Nonlin. Phenom. Complex Systems, 3(4), pp. 407-420. |
[5] | E. A. Coding, A. J. Dumbrell, 2012. Mathematical and theoretical ecology: link- ing models with ecological processes, Interface Focus, 2, pp. 144-149. |
[6] | J. B. Collings, 195. Bifurcation and stability analysis of a temperature depen- dent mite predator-prey interaction model incorporating prey refuge, Bull. Math. Biol., 57(1), pp. 63-76. |
[7] | B. Dubey, 2007. A prey-predatory model with a reserved area, Nonlin. Anal.: Modelling and Control, 12(4). pp. 479-494. |
[8] | B. Dubey, P. Chandra, P. Sinha, 2003. A model for fishery resource with reserve area, Nonlin. Anal.: RWA, 4, pp. 625-637. |
[9] | H. L. Freedman, P. Waltman, 1984. Persistence in models of three interacting predator-prey populations, Math. Biosc., 68, pp. 213-231. |
[10] | H. I. Freedman, G. S. K. Wolkowiez, 1986. Predator-prey system with group defense: The paradox of enrichment revisited, Bull. Math. Biol., 48, pp. 493-508. |
[11] | B. S. Goh, 1978. Global stability in a class of predator-prey models, Bull. Math.Biol., 40, pp. 525-533. |
[12] | B. S. Goh, 1976. Global stability in two species interactions, Math. Biosc., 3, pp. 313-318. |
[13] | G. W. Harrison, 1979. Global stability of predator-prey interactions, J. Math. Biol., 8, pp. 159-171. |
[14] | M. P. Hassel, R. M. May, 1973. Stability in insect host-parasite models, J. An. Ecol., 42, pp. 693-725. |
[15] | A. R. Hausrath, 1994. Analysis of a model predator- prey system with refuges, J. Math. Anal. Appl., 181, pp. 531-545. |
[16] | J. Holechek. 1980. Livestock grazing impacts on rangeland ecosystems, Journal of Soil and Water Conservation, 35, pp. 162-164. |
[17] | A. R. Ives, A. P. Dobson, 1987. Antipredator behavior and the population dy- namics of simple predator-prey systems, Am. Naturalist, 130, pp. 19-33. |
[18] | T. K. Kar, 2006. Modelling the analysis of a harvested prey-predator system incorporating a prey refuge, J. Comp. Appl. Math., 185, pp. 19-33. |
[19] | V. Krivan, 1998. Effects of optimal anti predator behavior of prey on predator pray dynamics: The role of refuges, Theor. Popul. Biol, 53, pp. 131-142. |
[20] | M. Maleewong, S. Hasadsri, 2013. Analytical and numerical results of dissolved oxygen and biochemical oxygen demand in non-uniform open channel, Ecological Modelling 252, 11-22. |
[21] | J. Maynard Smith, 1974. Models in Ecology, Cambridge University Press, Cam- bridge, UK. |
[22] | J. La Salle, S. Lefschetz, 1961. Stability by Liapunov’s Direct Method with Ap- plications, Academic Press, NewYork, London. |
[23] | K. Sudmeier-Rieux, H. Masundire, A. Rizvi and S. Rietbergen. Ecosystems, 2006. Livelihoods and Disasters: An integrated approach to disaster risk management. IUCN, Gland, Switzerland and Cambridge, UK. |
[24] | R. Tyson, S. Haines, and K.E. Hodges, 2010. Modelling the Canada lynx and snowshoe hare population cycle: the role of specialist predators, Theoretical Ecology 3, 97-111. |