[1] | G.Adomian,Solving Frontier Problems of Physics :the Composition Method. Kluwer, Boston, 1994. |
[2] | J.I.Ramos, Piecewise-adaptive decomposition methods. Chaos,Solitons and Fractals 198(1)(2008)92. |
[3] | F. Khani, M. Ahmadzadeh Raji, H. Hamedi Nejad, Analytical solutions and efficiency of the nonlinear fin problem with temperature-dependent thermal conductivity and heat transfer coefficient, Commun. Nonlinear Sci. Numer. Simul. 14 (2009) 3327_3338. |
[4] | A. Molabahrami, F. Khani, The homotopy analysis method to solve the Burgers-Huxley equation, Nonlinear Anal. RWA 10 (2) (2009) 589_600. |
[5] | M. Sajid, I. Ahmad, T. Hayat, M. Ayub, Unsteady flow and heat transfer of a second grade fluid over a stretching sheet, Commun. Nonlinear Sci. Numer.Simul. 14 (1) (2009) 96_108. |
[6] | F. Khani, M. Ahmadzadeh Raji, S. Hamedi-Nezhad, A series solution of the fin problem with a temperature-dependent thermal conductivity, Commun.Nonlinear Sci. Numer. Simul. 14 (2009) 3007_3017. |
[7] | F. Khani, A. Farmany, M. Ahmadzadeh Raji, A. Aziz, F. Samadi, Analytic solution for heat transfer of a third grade viscoelastic fluid in non-Darcy porous media with thermophysical effects, Commun. Nonlinear Sci. Numer. Simul. (2009) doi:10.1016/j.cnsns.2009.01.031. |
[8] | F. Khani, A. Aziz, Thermal analysis of a longitudinal trapezoidal fin with temperature dependent thermal conductivity and heat transfer coefficient, Commun. Nonlinear Sci. Numer. Simul (2009), doi:10.1016/j.cnsns.2009.04.028. |
[9] | J.H.He,Variational iteration method: a kind of nonlinear analytical technique :some example.International Journal of NonLinear Mechanics34(4)(1999)699. |
[10] | J.H.He,X.H.Wu,Construction of solitary solution and compaction-like solution by variation iteration method. Chaos.Solitons&Fractals29(2006)108. |
[11] | D.D.Ganji,HafezTari,H.Babazadeh,The application of He’s variational iteration method to nonlinear equations arising in heat transfer.Physics Letters A 363 (3)(2007)213. |
[12] | M.Rafei,D.D.Ganji,H.Daniali,H.Pashaei,Thevariationaliterationmethodfornonlinear oscillatorswithdiscontinuities.JournalofSoundandVibration305 (2007) 614. |
[13] | J.H.He,The homotopy perturbation method for nonlinear oscillators with discontinuities. Applied Mathematics and Computation151 (1)(2004)287. |
[14] | J.H.He,Homotopy perturbation method for bifurcation on nonlinear problems.International Journal of Nonlinear Sciences and Numerical Simulation6 (2005) 207. |
[15] | D.D.Ganji,A.Sadighi,Application of He’s homotopy perturbation method to nonlinear coupled systems of reaction diffusion equations .International Journal of Nonlinear Sciences and Numerical Simulation7(4)(2006)411. |
[16] | M.Rafei,D.D.Ganji,Explicit solutions of Helmholtz equation and fifth-order KdV equation using homotopy perturbation method .International Journal of Nonlinear Sciences and Numerical Simulation7(3)(2006)321. |
[17] | T.Özis,A.Yildirim,Acomparative study of He’s homotopy perturbation method for determining frequency amplitude relation of an on linear oscillator with discontinuities. International Journal of Nonlinear Sciences and Numerical Simulation8(2)(2007)243. |
[18] | A.Beléndez,C.Pascual,S.Gallego,M.Ortuño,C.Neipp, Application of a modified He’s homotopy perturbation method to obtain higher-order approximations of an x1/3 force nonlinear oscillator.PhysicsLettersA371 (2007) 421. |
[19] | J.H.He,Non-perturbative Methods for Strongly Nonlinear Problems, Dissertation, deVerlagim Internet GmbH,2006. |
[20] | M.Dehghan ,F.Shakeri , Solution of an integro-differential equation arising in oscillating magnetic fields using He’s homotopy perturbation method .Progress in Electromagnetic Research ,PIER78(2008)361. |
[21] | M.Dehghan,F.Shakeri,The numerical solution of the second Painlev equation. Numerical Method for Partial Differential Equations 25(2009)1238. |
[22] | M.Dehghan,J.Manafian,The solution of the variable coefficients fourth-order parabolic partial differential equations by the homotopy perturbation method. ZeitschriftfuerNatur for schung A64a(2009)411. |
[23] | F.Soltanian,M.Dehghan,S.M.Karbassi, Solution of the differential algebraic equations via homotopy perturbation method and their engineering applications, International Journal of Computer Mathematics ,inpress, doi:10. 1080/00207160802545908. |
[24] | A.Saadatmandi,M.Dehghan,A.Eftekhari,Application of He’s homotopy perturbation method for nonlinear system of second-order boundary value problems. Nonlinear Analysis : Real World Applications 10(2009)1912. |
[25] | F.Shakeri,M.Dehghan,Solution of delay differential equations via a homotopy perturbation method. Mathematical and Computer Modelling 48(2008) 486. |
[26] | F.Shakeri,M.Dehghan,Inverse problem of diffusion equation by He’s homotopy perturbation method. Physica Scripta75(2007)551. |
[27] | M.Dehghan,F.Shakeri,Solution of a partial differential equation subject to temperature over specification by He’s homotopy perturbation method. Physica Scripta 75(2007)778. |
[28] | M.Dehghan,F.Shakeri, Use of He’s homotpy perturbation method for solving a partial differential equation arising in modeling of flow in porous media. Journal of Porous Media 11(2008)765. |
[29] | E.N. Aksan, Appl. Math. Comput. 174 (2006) 884. |
[30] | S. Kutluay, A. Esen, Int. J. Comput. Math. 81 (2004) 1433. |
[31] | S. Abbasbandy, M.T. Darvishi, Appl. Math. Comput. 163 (2005) 1265. |
[32] | Sirendaoreji, J. Phys. A: Math. Gen. 32 (1999) 6897. |
[33] | B. Tian, Y. Gao, J. Phys. A: Math. Gen. 29 (1996) 2895. |
[34] | H. Bateman, Mon. Weather Rev. 43 (1915) 163. |
[35] | J.M. Burgers, Proc. R. Nether. Acad. Sci. Amsterdam 43 (1940) 2. |
[36] | E. Hopf, Commun. Pure Appl. Math. 3 (1950) 201. |
[37] | J.D. Cole, Quart. Appl. Math. 9 (1951) 225. |
[38] | E.R. Benton, G.W. Platzman, Quart. Appl. Math. 30 (1972) 195. |
[39] | V.I. Karpman, Nonlinear Waves in Dispersive Media, Pergamon, Oxford, 1975. |
[40] | Cole, J. D., On a quasilinear parabolic equation occurring in aerodynamics, Quart. Appl. Math., Vol. 9, No. 3, pp. 225–236, 1951. |
[41] | Ibragimov, N. H. (Editor), CRC Handbook of Lie Group Analysis of Differential Equations, Vol. 1, Symmetries, Exact Solutions and Conservation Laws, CRC Press, Boca Raton, 1994. |
[42] | Polyanin, A. D. and Zaitsev, V. F., Handbook of Nonlinear Partial Differential Equations , Chapman & Hall/CRC, Boca Raton, 2004. |
[43] | E.Hesameddini, H.Latifizadeh, Reconstruction of Variational Iteration Algorithms using the Laplace Transform, Int. J. Nonlinear Sci. Numer. Simul. 10 (2009)1377-1382 |