[1] | B.Singh, J. Lal, MHD axial flow in a triangular pipe under transverse magnetic field, Ind. J. Pure Appl. Math. 9 (1978) 101- 115. |
[2] | B.Singh, J. Lal, MHD axial flow in a triangular pipe under transverse magnetic field parallel to a side of the triangle, Ind. J. Technol. 17 (1979) 184-189. |
[3] | B.Singh, J. Lal, Finite element method for MHD channel flow with arbitrary wall conductivity, J Math. Phys.Sci. 18 (1984) 501- 516. |
[4] | L.R.T. Gardner, G.A. Gardner, A two-dimensional bi-cubic B-spline finite element used in a study of MHD duct flow, Comput Methods Appl. Mech. Eng. 124(1995) 365- 375. |
[5] | M. Tezer-Sezgin, S. Köksal, FEM for solving MHD flow in a rectangular duct, Int. J. Numer. Meth. Fluids 28 (1989) 445-459. |
[6] | Z. Demendy, T. Nagy, A new algorithm for solution of equations of MHD channel flows at moderate Hartmann numbers, Acta Mechanica 123 (1997) 135-149. |
[7] | K.E. Barrett, Duct flow with a transverse magnetic field at high Hartmann numbers. Int. J. Numer. Meth. Fluids 50 (2001) 1893-1906. |
[8] | A.I. Neslitürk, M. Tezer-Sezgin, The finite element method for MHD flow at high Hartmann numbers, Comput. Methods. Appl. Mech 194 (2005) 1201- 1224. |
[9] | A.I. Neslitürk, M. Tezer-Sezgin, Finite element method solution of electrically driven magnetohydrodynamic flow, J. Comput. Appl. Math 192 (2006) 339-352. |
[10] | B.Singh, P.K. Agarwal, Numerical solution of a singular integral equation appearing in MHD, ZAMP 35 (1984) 760-769. |
[11] | M. Tezer-Sezgin, BEM solution of MHD flow in a rectangular duct, Internat. J. Numer. Methods Fluids 18 (1994) 937-952. |
[12] | H.W. Liu, S.P. Zhu, The dual reciprocity boundary element method for magnetohydrodynamic cannel flows, ANZIAM J. 44 (2) (2002) 305-322. |
[13] | M. Tezer-Sezgin, S.H. Aydın, Dual reciprocity boundary element method for magnetohydrodynamic flows using radial basis functions, Internat. J. Comput. Fluid Dynamics 16 (1) (2002) 49-63. |
[14] | A. Carabineanu, A. Dinu, I. Oprea, The application of the boundary element method to magnetohydrodynamic duct flow, ZAMP 46 (1995) 971-981. |
[15] | C. Bozkaya, M. Tezer-Sezgin, Boundary element solution of unsteady magnetohydrodynamic duct flow with differential quadrature time integration scheme, Int. J. Numer. Meth. Fluids 51 (2006) 567–584. |
[16] | C. Bozkaya, M. Tezer-Sezgin, Fundamental solution for coupled magnetohydrodynamic flow equations, J. Comput. Appl. Math. 203 (2007) 125–144. |
[17] | N. Bozkaya, M. Tezer-Sezgin, Time-domain BEM solution of convection–diffusion-type MHD equations, Int. J. Numer. Meth. Fluids 56 (2008) 1969–1991. |
[18] | M. Tezer-Sezgin, Solution of magnetohydrodynamic flow in a rectangular duct by differential quadrature method, Computers & Fluids 33 (2004) 533-547 |
[19] | H. Köroğlu, Chebyshev series solution of linear Fredholm integrodifferential equations, Int. J. Math.Educ.Sci.Techno. 29(4) (1998) 489-500 |
[20] | M. Dehghan, D. Mirzaei, Meshless local boundary integral equation (LBIE) method for the unsteady magnetohydrodynamic (MHD) flow in rectangular and circular pipes, Comput. Phys. Commun. 180/9 (2009) 1458-1466 |
[21] | İ. ÇELIK, Solution of magnetohydrodynamic flow in a rectangular duct by Chebyshev collocation method, International Journal for Numerical Methods in Fluids, 66 (2011) 1325–1340 |
[22] | C. Keşan, Chebyshev polynomial solutions of second-order linear partial differential equations, Appl. Math. comput. 134(2003) 109-124 |
[23] | L. Dragos, Magneto-Fluid dynamics, Abacus Press, , 1975. |
[24] | J. A. Shercliff, Steady motion conducting fluids in pipes under transverse magnetic fields, Proc. Cambridge Philos. Soc. 49 (1953) 136-144. |