| [1]   | Chawla, M. M., and Katti, C. P., 1982, Finite difference methods and their convergence for a class of singular two-point boundary value problems, Numer. Math, 39, 341-350 | 
| [2]   | Chawla, M. M., Mckee, S., and Shaw, G., 1986, Order h2 method for a singular two-point boundary value problem, BIT, 26, 326-381 | 
| [3]   | El-Gebeily, M. A., and Abu-Zaid, I. T., 1998, On a finite difference method for singular two-point boundary value problems, IMA J. Numer. Anal, 18, 179-190 | 
| [4]   | Pandey, R. K., and Singh, R. K., 2004, On the convergence of a finite difference method for a classof singular boundary value problems arising in physiology, Journal of Computational Applied Mathematics, 166, 553-564 | 
| [5]   | McElwain, D. L. S, 1978, A re-examination of oxygen diffusion in a spherical cell with Michaelis Menten oxygen uptake kinetics, J. Theor. Biol, 71, 255-263 | 
| [6]   | Duggan, R. C., and Goodman, A. M., 1986, Point wise bounds for a nonlinear heat conduction modelof the human head, Bull. Math. Biol, 48, 229-236 | 
| [7]   | Flesch, U., 1975, The distribution of heat sources in the human head: A theoretical considerationJ. Theor. Biol, 54, 285-287 | 
| [8]   | Garner, J. B., and Shivaji, R., 1990, Diffusion problems with mixed nonlinear boundary condition,J. Math. Anal.Appl, 148  422-430 | 
| [9]   | Ravi Kanth, A. S. V., and Bhattacharya, V., Cubic spline for a class of nonlinear singularboundary value problems arising in physiology, Journal of Computational Applied Mathematics, 2005 | 
| [10]   | Canuto, C., Hussaini, M. Y., Quarteroni, A., and Zang, T. A., Spectral Methods in Fluid Dynamics, Springer-Verlag, New York, 1987 | 
| [11]   | Shizgal, B., 1981, A Gaussian quadrature procedure for use in the solution of the Boltzmann equationand related problems, Journal of Computational Physic 41, 309-328 | 
| [12]   | Shizgal, B., and Chen, H., 1996, The quadrature discretization method (QDM) in the solution of the Shrödinger equation with non-classical basis functions, Journal of Chemical Physics 104(11), 4137-4150 | 
| [13]   | Gautschi, W., 1985, Orthogonal polynomials-constructive Theory and applications, Journal of Computational Applied Mathematics, 12/13, 61-75 | 
| [14]   | Golub, G. H., and Welsch, J. H., 1996, Calculation of Gauss quadrature rules, Mathematics of Computation, 23, 221-230 | 
| [15]   | Elnagar, G. N., and Kazemi, M. A., 2004, Numerical periodic optimal control: Apseudo-spectral Fourier approach, Numerical Functional Analysis and Optimization, 25, 707-724 | 
| [16]   | Elnagar, G. N., and Kazemi, M. A., and Razzaghi, M., 1995, Thepseudo-spectral Legendre method for discretizing optimal control problems, IEEE Tran. Automat. Cont, 40(10), 1793-1796 | 
| [17]   | Welfert, B. D., 1997, Generation of pseudo-spectral differentiation matrices, SIAM Journal of Numerical Analysis, 24, 1640-1657 | 
| [18]   | Hiltmann, P., Lory, P., 1983, On oxygen diffusion in a spherical cell with Michaelis-Menten oxygen uptake kinetics, Bull. Math. Biol, 45,661-664 | 
| [19]   | Asaithambi, N. S., and Goodman, J. B., 1989, Point wise bounds for a class of singular diffusion problems in physiology, App. Math. Comput, 30, 215-222 | 
| [20]   | A. Alipanah, M. Razzaghi and M. Dehghan, 2007, Nonclassical pseudospectral method for the solution of brachistochrone problem, Chaos, Solitons and Fractals, 34, 1622-1628 |